#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genome-scale Analysis of FNR Reveals Complex Features of Transcription Factor Binding


FNR is a well-studied global regulator of anaerobiosis, which is widely conserved across bacteria. Despite the importance of FNR and anaerobiosis in microbial lifestyles, the factors that influence its function on a genome-wide scale are poorly understood. Here, we report a functional genomic analysis of FNR action. We find that FNR occupancy at many target sites is strongly influenced by nucleoid-associated proteins (NAPs) that restrict access to many FNR binding sites. At a genome-wide level, only a subset of predicted FNR binding sites were bound under anaerobic fermentative conditions and many appeared to be masked by the NAPs H-NS, IHF and Fis. Similar assays in cells lacking H-NS and its paralog StpA showed increased FNR occupancy at sites bound by H-NS in WT strains, indicating that large regions of the genome are not readily accessible for FNR binding. Genome accessibility may also explain our finding that genome-wide FNR occupancy did not correlate with the match to consensus at binding sites, suggesting that significant variation in ChIP signal was attributable to cross-linking or immunoprecipitation efficiency rather than differences in binding affinities for FNR sites. Correlation of FNR ChIP-seq peaks with transcriptomic data showed that less than half of the FNR-regulated operons could be attributed to direct FNR binding. Conversely, FNR bound some promoters without regulating expression presumably requiring changes in activity of condition-specific transcription factors. Such combinatorial regulation may allow Escherichia coli to respond rapidly to environmental changes and confer an ecological advantage in the anaerobic but nutrient-fluctuating environment of the mammalian gut.


Vyšlo v časopise: Genome-scale Analysis of FNR Reveals Complex Features of Transcription Factor Binding. PLoS Genet 9(6): e32767. doi:10.1371/journal.pgen.1003565
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003565

Souhrn

FNR is a well-studied global regulator of anaerobiosis, which is widely conserved across bacteria. Despite the importance of FNR and anaerobiosis in microbial lifestyles, the factors that influence its function on a genome-wide scale are poorly understood. Here, we report a functional genomic analysis of FNR action. We find that FNR occupancy at many target sites is strongly influenced by nucleoid-associated proteins (NAPs) that restrict access to many FNR binding sites. At a genome-wide level, only a subset of predicted FNR binding sites were bound under anaerobic fermentative conditions and many appeared to be masked by the NAPs H-NS, IHF and Fis. Similar assays in cells lacking H-NS and its paralog StpA showed increased FNR occupancy at sites bound by H-NS in WT strains, indicating that large regions of the genome are not readily accessible for FNR binding. Genome accessibility may also explain our finding that genome-wide FNR occupancy did not correlate with the match to consensus at binding sites, suggesting that significant variation in ChIP signal was attributable to cross-linking or immunoprecipitation efficiency rather than differences in binding affinities for FNR sites. Correlation of FNR ChIP-seq peaks with transcriptomic data showed that less than half of the FNR-regulated operons could be attributed to direct FNR binding. Conversely, FNR bound some promoters without regulating expression presumably requiring changes in activity of condition-specific transcription factors. Such combinatorial regulation may allow Escherichia coli to respond rapidly to environmental changes and confer an ecological advantage in the anaerobic but nutrient-fluctuating environment of the mammalian gut.


Zdroje

1. LiebJD, LiuX, BotsteinD, BrownPO (2001) Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat Genet 28: 327–334.

2. LiuX, LeeC-K, GranekJA, ClarkeND, LiebJD (2006) Whole-genome comparison of Leu3 binding in vitro and in vivo reveals the importance of nucleosome occupancy in target site selection. Genome Res 16: 1517–1528.

3. FarnhamPJ (2009) Insights from genomic profiling of transcription factors. Nat Rev Genet 10: 605–616.

4. ZhouX, O'SheaEK (2011) Integrated approaches reveal determinants of genome-wide binding and function of the transcription factor Pho4. Mol Cell 42: 826–836.

5. GersteinMB, KundajeA, HariharanM, LandtSG, YanK-K, et al. (2012) Architecture of the human regulatory network derived from ENCODE data. Nature 489: 91–100.

6. LeeDJ, MinchinSD, BusbySJW (2012) Activating transcription in bacteria. Annu Rev Microbiol 66: 125–152.

7. BrowningDF, GraingerDC, BusbySJ (2010) Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. Curr Opin Microbiol 13: 773–780.

8. StruhlK (1999) Fundamentally different logic of gene regulation in eukaryotes and prokaryotes. Cell 98: 1–4.

9. WadeJT, StruhlK, BusbySJW, GraingerDC (2007) Genomic analysis of protein-DNA interactions in bacteria: insights into transcription and chromosome organization. Mol Microbiol 65: 21–26.

10. WadeJT, ReppasNB, ChurchGM, StruhlK (2005) Genomic analysis of LexA binding reveals the permissive nature of the Escherichia coli genome and identifies unconventional target sites. Genes Dev 19: 2619–2630.

11. MacvaninM, AdhyaS (2012) Architectural organization in E. coli nucleoid. Biochim Biophys Acta 1819: 830–835.

12. RimskyS, TraversA (2011) Pervasive regulation of nucleoid structure and function by nucleoid-associated proteins. Curr Opin Microbiol 14: 136–141.

13. DillonSC, DormanCJ (2010) Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Micro 8: 185–195.

14. SpiroS (1994) The FNR family of transcriptional regulators. Antonie Van Leeuwenhoek 66: 23–36.

15. GreenJ, CrackJC, ThomsonAJ, LeBrunNE (2009) Bacterial sensors of oxygen. Curr Opin Microbiol 12: 145–151.

16. FleischhackerAS, KileyPJ (2011) Iron-containing transcription factors and their roles as sensors. Curr Opin Chem Biol 15: 335–341.

17. SalmonK, HungS-P, MekjianK, BaldiP, HatfieldGW, et al. (2003) Global gene expression profiling in Escherichia coli K12. The effects of oxygen availability and FNR. J Biol Chem 278: 29837–29855.

18. KangY, WeberKD, QiuY, KileyPJ, BlattnerFR (2005) Genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function. J Bacteriol 187: 1135–1160.

19. ConstantinidouC, HobmanJL, GriffithsL, PatelMD, PennCW, et al. (2006) A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth. J Biol Chem 281: 4802–4815.

20. BarnardA, WolfeA, BusbyS (2004) Regulation at complex bacterial promoters: how bacteria use different promoter organizations to produce different regulatory outcomes. Curr Opin Microbiol 7: 102–108.

21. BrowningDF, BusbySJ (2004) The regulation of bacterial transcription initiation. Nat Rev Micro 2: 57–65.

22. LonettoMA, RhodiusV, LambergK, KileyP, BusbyS, et al. (1998) Identification of a contact site for different transcription activators in region 4 of the Escherichia coli RNA polymerase σ70 subunit. J Mol Biol 284: 1353–1365.

23. StewartV (1982) Requirement of Fnr and NarL functions for nitrate reductase expression in Escherichia coli K-12. J Bacteriol 151: 1320–1325.

24. SchröderI, DarieS, GunsalusRP (1993) Activation of the Escherichia coli nitrate reductase (narGHJI) operon by NarL and Fnr requires integration host factor. J Biol Chem 268: 771–774.

25. LambergKE, KileyPJ (2000) FNR-dependent activation of the class II dmsA and narG promoters of Escherichia coli requires FNR-activating regions 1 and 3. Mol Microbiol 38: 817–827.

26. BearsonSMD, AlbrechtJA, GunsalusRP (2002) Oxygen and nitrate-dependent regulation of dmsABC operon expression in Escherichia coli: sites for Fnr and NarL protein interactions. BMC Microbiol 2: 13.

27. BrowningDF, ColeJA, BusbySJW (2000) Suppression of FNR-dependent transcription activation at the Escherichia coli nir promoter by Fis, IHF and H-NS: modulation of transcription initiation by a complex nucleo-protein assembly. Mol Microbiol 37: 1258–1269.

28. KornbergRD (1999) Eukaryotic transcriptional control. Trends Cell Biol 9: M46–M49.

29. GraingerDC, AibaH, HurdD, BrowningDF, BusbySJW (2007) Transcription factor distribution in Escherichia coli: studies with FNR protein. Nucleic Acids Res 35: 269–278.

30. KahramanoglouC, SeshasayeeASN, PrietoAI, IbbersonD, SchmidtS, et al. (2011) Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli. Nucleic Acids Res 39: 2073–2091.

31. GraingerDC, HurdD, GoldbergMD, BusbySJW (2006) Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome. Nucleic Acids Res 34: 4642–4652.

32. OshimaT, IshikawaS, KurokawaK, AibaH, OgasawaraN (2006) Escherichia coli histone-like protein H-NS preferentially binds to horizontally acquired DNA in association with RNA polymerase. DNA Res 13: 141–153.

33. PrietoAI, KahramanoglouC, AliRM, FraserGM, SeshasayeeASN, et al. (2012) Genomic analysis of DNA binding and gene regulation by homologous nucleoid-associated proteins IHF and HU in Escherichia coli K12. Nucleic Acids Res 109: 3524–3537.

34. LangB, BlotN, BouffartiguesE, BuckleM, GeertzM, et al. (2007) High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes. Nucleic Acids Res 35: 6330–6337.

35. LimCJ, LeeSY, KenneyLJ, YanJ (2012) Nucleoprotein filament formation is the structural basis for bacterial protein H-NS gene silencing. Sci Rep 2: 509.

36. HertzGZ, StormoGD (1999) Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 15: 563–577.

37. SuttonVR, MettertEL, BeinertH, KileyPJ (2004) Kinetic analysis of the oxidative conversion of the [4Fe-4S]2+ cluster of FNR to a [2Fe-2S]2+ cluster. J Bacteriol 186: 8018–8025.

38. DavisJ, GoadrichM (2006) The relationship between Precision-Recall and ROC curves. Proceedings of the 23rd International Conference on Machine Learning

39. SonnenfieldJM, BurnsCM, HigginsCF, HintonJ (2001) The nucleoid-associated protein StpA binds curved DNA, has a greater DNA-binding affinity than H-NS and is present in significant levels in hns mutants. Biochimie 83: 243–249.

40. UyarE, KurokawaK, YoshimuraM, IshikawaS, OgasawaraN, et al. (2009) Differential binding profiles of StpA in wild-type and hns mutant cells: a comparative analysis of cooperative partners by chromatin immunoprecipitation-microarray analysis. J Bacteriol 191: 2388–2391.

41. MelvilleSB, GunsalusRP (1996) Isolation of an oxygen-sensitive FNR protein of Escherichia coli: interaction at activator and repressor sites of FNR-controlled genes. Proc Natl Acad Sci USA 93: 1226–1231.

42. BrowningDF, GraingerDC, BeattyCM, WolfeAJ, ColeJA, et al. (2005) Integration of three signals at the Escherichia coli nrf promoter: a role for Fis protein in catabolite repression. Mol Microbiol 57: 496–510.

43. JonesHM, GunsalusRP (1987) Regulation of Escherichia coli fumarate reductase (frdABCD) operon expression by respiratory electron acceptors and the fnr gene product. J Bacteriol 169: 3340–3349.

44. LombardoMJ, LeeAA, KnoxTM, MillerCG (1997) Regulation of the Salmonella typhimurium pepT gene by cyclic AMP receptor protein (CRP) and FNR acting at a hybrid CRP-FNR site. J Bacteriol 179: 1909–1917.

45. DahlJU, UrbanA, BolteA, SriyabhayaP, DonahueJL, et al. (2011) The identification of a novel protein involved in molybdenum cofactor biosynthesis in Escherichia coli. J Biol Chem 286: 35801–35812.

46. AndrewsS, CoxGB, GibsonF (1977) The anaerobic oxidation of dihydroorotate by Escherichia coli K-12. Biochim Biophys Acta 462: 153–160.

47. EichlerK, BuchetA, LemkeR, KleberHP, Mandrand-BerthelotMA (1996) Identification and characterization of the caiF gene encoding a potential transcriptional activator of carnitine metabolism in Escherichia coli. J Bacteriol 178: 1248–1257.

48. DurandS, StorzG (2010) Reprogramming of anaerobic metabolism by the FnrS small RNA. Mol Microbiol 75: 1215–1231.

49. BoysenA, Moller-JensenJ, KallipolitisB, Valentin-HansenP, OvergaardM (2010) Translational regulation of gene expression by an anaerobically induced small non-coding RNA in Escherichia coli. J Biol Chem 285: 10690–10702.

50. CotterPA, MelvilleSB, AlbrechtJA, GunsalusRP (1997) Aerobic regulation of cytochrome d oxidase (cydAB) operon expression in Escherichia coli: roles of Fnr and ArcA in repression and activation. Mol Microbiol 25: 605–615.

51. Samuel RajV, FüllC, YoshidaM, SakataK, KashiwagiK, et al. (2002) Decrease in cell viability in an RMF, σ38, and OmpC triple mutant of Escherichia coli. Biochem Biophys Res Commun 299: 252–257.

52. RhodiusVA, SuhWC, NonakaG, WestJ, GrossCA (2006) Conserved and variable functions of the σE stress response in related genomes. PLoS Biol 4: e2.

53. LutzS, BöhmR, BeierA, BöckA (1990) Characterization of divergent NtrA-dependent promoters in the anaerobically expressed gene cluster coding for hydrogenase 3 components of Escherichia coli. Mol Microbiol 4: 13–20.

54. LacourS, LandiniP (2004) σS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of σS-dependent genes and identification of their promoter sequences. J Bacteriol 186: 7186–7195.

55. DarwinAJ, ZiegelhofferEC, KileyPJ, StewartV (1998) Fnr, NarP, and NarL regulation of Escherichia coli K-12 napF (periplasmic nitrate reductase) operon transcription in vitro. J Bacteriol 180: 4192–4198.

56. StewartV, BledsoePJ, ChenL-L, CaiA (2009) Catabolite repression control of napF (periplasmic nitrate reductase) operon expression in Escherichia coli K-12. J Bacteriol 191: 996–1005.

57. JenningsMP, BeachamIR (1993) Co-dependent positive regulation of the ansB promoter of Escherichia coli by CRP and the FNR protein: a molecular analysis. Mol Microbiol 9: 155–164.

58. FabichAJ, LeathamMP, GrissomJE, WileyG, LaiH, et al. (2011) Genotype and phenotypes of an intestine-adapted Escherichia coli K-12 mutant selected by animal passage for superior colonization. Infect Immun 79: 2430–2439.

59. KammlerM, SchonC, HantkeK (1993) Characterization of the ferrous iron uptake system of Escherichia coli. J Bacteriol 175: 6212–6219.

60. OgasawaraH, ShinoharaS, YamamotoK, IshihamaA (2012) Novel regulation targets of the metal-response BasS-BasR two-component system of Escherichia coli. Microbiology 158: 1482–1492.

61. Cruz-RamosH, CrackJ, WuG, HughesMN, ScottC, et al. (2002) NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin, Hmp. EMBO J 21: 3235–3244.

62. GreenJ, BaldwinML (1997) The molecular basis for the differential regulation of the hlyE-encoded haemolysin of Escherichia coli by FNR and HlyX lies in the improved activating region 1 contact of HlyX. Microbiology 143(Pt 12): 3785–3793.

63. TeramotoJ, YoshimuraSH, TakeyasuK, IshihamaA (2010) A novel nucleoid protein of Escherichia coli induced under anaerobiotic growth conditions. Nucleic Acids Res 38: 3605–3618.

64. PetersJM, MooneyRA, GrassJA, JessenED, TranF, et al. (2012) Rho and NusG suppress pervasive antisense transcription in Escherichia coli. Genes Dev 26: 2621–2633.

65. WinterSE, WinterMG, XavierMN, ThiennimitrP, PoonV, et al. (2013) Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339: 708–711.

66. ThieffryD, SalgadoH, HuertaAM, Collado-VidesJ (1998) Prediction of transcriptional regulatory sites in the complete genome sequence of Escherichia coli K-12. Bioinformatics 14: 391–400.

67. Mendoza-VargasA, OlveraL, OlveraM, GrandeR, Vega-AlvaradoL, et al. (2009) Genome-wide identification of transcription start sites, promoters and transcription factor binding sites in E. coli. PLoS ONE 4: e7526.

68. TanK, Moreno-HagelsiebG, Collado-VidesJ, StormoGD (2001) A comparative genomics approach to prediction of new members of regulons. Genome Res 11: 566–584.

69. RobisonK, McGuireAM, ChurchGM (1998) A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. J Mol Biol 284: 241–254.

70. KeselerIM, Collado-VidesJ, Santos-ZavaletaA, Peralta-GilM, Gama-CastroS, et al. (2011) EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res 39: D583–D590.

71. NoomMC, NavarreWW, OshimaT, WuiteGJL, DameRT (2007) H-NS promotes looped domain formation in the bacterial chromosome. Curr Biol 17: R913–R914.

72. ShimadaT, FujitaN, YamamotoK, IshihamaA (2011) Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. PLoS ONE 6: e20081.

73. GraingerDC, HurdD, HarrisonM, HoldstockJ, BusbySJW (2005) Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome. Proc Natl Acad Sci USA 102: 17693–17698.

74. White-ZieglerCA, MalhowskiAJ, YoungS (2007) Human body temperature (37°C) increases the expression of iron, carbohydrate, and amino acid utilization genes in Escherichia coli K-12. J Bacteriol 189: 5429–5440.

75. TagkopoulosI, LiuYC, TavazoieS (2008) Predictive behavior within microbial genetic networks. Science 320: 1313–1317.

76. DormanCJ (2007) H-NS, the genome sentinel. Nat Rev Micro 5: 157–161.

77. BouffartiguesE, BuckleM, BadautC, TraversA, RimskyS (2007) H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing. Nat Struct Mol Biol 14: 441–448.

78. ShimadaT, BridierA, BriandetR, IshihamaA (2011) Novel roles of LeuO in transcription regulation of E. coli genome: antagonistic interplay with the universal silencer H-NS. Mol Microbiol 82: 378–397.

79. DillonSC, EspinosaE, HokampK, UsseryDW, CasadesúsJ, et al. (2012) LeuO is a global regulator of gene expression in Salmonella enterica serovar Typhimurium. Mol Microbiol 85: 1072–1089.

80. QueirozMH, MadridC, PaytubiS, BalsalobreC, JuarezA (2011) Integration host factor alleviates H-NS silencing of the Salmonella enterica serovar Typhimurium master regulator of SPI1, hilA. Microbiology 157: 2504–2514.

81. VasuK, NagamalleswariE, NagarajaV (2012) Promiscuous restriction is a cellular defense strategy that confers fitness advantage to bacteria. Proc Natl Acad Sci USA 109: E1287–E1293.

82. DormanCJ (2013) Co-operative roles for DNA supercoiling and nucleoid-associated proteins in the regulation of bacterial transcription. Biochem Soc Trans 41: 542–547.

83. CameronADS, DormanCJ (2012) A fundamental regulatory mechanism operating through OmpR and DNA topology controls expression of Salmonella pathogenicity islands SPI-1 and SPI-2. PLoS Genet 8: e1002615.

84. AndrewsSC, RobinsonAK, Rodríguez QuiñonesF (2006) Bacterial iron homeostasis. FEMS Microbiol Rev 27: 215–237.

85. MarteynB, WestNP, BrowningDF, ColeJA, ShawJG, et al. (2010) Modulation of Shigella virulence in response to available oxygen in vivo. Nature 465: 355–358.

86. IshihamaA (2010) Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. FEMS Microbiol Rev 34: 628–645.

87. Martínez-AntonioA, JangaSC, SalgadoH, Collado-VidesJ (2006) Internal-sensing machinery directs the activity of the regulatory network in Escherichia coli. J Mol Biol 14: 22–27.

88. Martínez-AntonioA, Collado-VidesJ (2003) Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol 6: 482–489.

89. Martínez-AntonioA, JangaSC, ThieffryD (2008) Functional organisation of Escherichia coli transcriptional regulatory network. J Mol Biol 381: 238–247.

90. ChoB-K, KnightEM, BarrettCL, PalssonBØ (2008) Genome-wide analysis of Fis binding in Escherichia coli indicates a causative role for A-/AT-tracts. Genome Res 18: 900–910.

91. DillonSC, CameronADS, HokampK, LucchiniS, HintonJCD, et al. (2010) Genome-wide analysis of the H-NS and Sfh regulatory networks in Salmonella Typhimurium identifies a plasmid-encoded transcription silencing mechanism. Mol Microbiol 76: 1250–1265.

92. BuchetA, EichlerK, Mandrand-BerthelotMA (1998) Regulation of the carnitine pathway in Escherichia coli: investigation of the cai-fix divergent promoter region. J Bacteriol 180: 2599–2608.

93. DomkaJ, LeeJ, WoodTK (2006) YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling. Appl Environ Microbiol 72: 2449–2459.

94. QuailMA, GuestJR (1995) Purification, characterization and mode of action of PdhR, the transcriptional repressor of the pdhR-aceEF-lpd operon of Escherichia coli. Mol Microbiol 15: 519–529.

95. OgasawaraH, IshidaY, YamadaK, YamamotoK, IshihamaA (2007) PdhR (pyruvate dehydrogenase complex regulator) controls the respiratory electron transport system in Escherichia coli. J Bacteriol 189: 5534–5541.

96. HommaisF, KrinE, CoppéeJ-Y, LacroixC, YeramianE, et al. (2004) GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli. Microbiology 150: 61–72.

97. IuchiS, AristarkhovA, DongJ, TaylorJ, LinE (1994) Effects of nitrate respiration on expression of the Arc-controlled operons encoding succinate dehydrogenase and flavin-linked L-lactate dehydrogenase. J Bacteriol 176: 1695–1701.

98. NeidhardtFC, BlochPL, SmithDF (1974) Culture medium for Enterobacteria. J Bacteriol 119: 736–747.

99. LazazzeraBA, BatesDM, KileyPJ (1993) The activity of the Escherichia coli transcription factor FNR is regulated by a change in oligomeric state. Genes Dev 7: 1993–2005.

100. BoydD, WeissDS, ChenJC, BeckwithJ (2000) Towards single-copy gene expression systems making gene cloning physiologically relevant: lambda InCh, a simple Escherichia coli plasmid-chromosome shuttle system. J Bacteriol 182: 842–847.

101. DermanAI, PuzissJW, BassfordPJJr, BeckwithJ (1993) A signal sequence is not required for protein export in prlA mutants of Escherichia coli. EMBO J 12: 879–888.

102. BabaT, AraT, HasegawaM, TakaiY, OkumuraY, et al. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 2006.0008.

103. YuD, EllisHM, LeeEC, JenkinsNA, CopelandNG, et al. (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97: 5978–5983.

104. KhodurskyAB, BernsteinJA, PeterBJ, RhodiusV, WendischVF, et al. (2003) Escherichia coli spotted double-strand DNA microarrays: RNA extraction, labeling, hybridization, quality control, and data management. Methods Mol Biol 224: 61–78.

105. IrizarryRA, BolstadBM, CollinF, CopeLM, HobbsB, et al. (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31: e15.

106. SmythGK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3.

107. ChoB-K, ZenglerK, QiuY, ParkYS, KnightEM, et al. (2009) The transcription unit architecture of the Escherichia coli genome. Nat Biotechnol 27: 1043–1049.

108. LiR, YuC, LiY, LamT-W, YiuS-M, et al. (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25: 1966–1967.

109. HardcastleTJ, KellyKA (2010) baySeq: Empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11: 422.

110. DavisSE, MooneyRA, KaninEI, GrassJ, LandickR, et al. (2011) Mapping E. coli RNA Polymerase and associated transcription factors and identifying promoters genome-wide. Meth Enzymol 498: 449–471.

111. WitteK, SchuhAL, HegermannJ, SarkeshikA, MayersJR, et al. (2011) TFG-1 function in protein secretion and oncogenesis. Nat Cell Biol 13: 550–558.

112. HuberW, Heydebreck vonA, SültmannH, PoustkaA, VingronM (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18 Suppl 1: S96–S104.

113. DufourYS, LandickR, DonohueTJ (2008) Organization and evolution of the biological response to singlet oxygen stress. J Mol Biol 383: 713–730.

114. KuanPF, ChunH, KeleşS (2008) CMARRT: a tool for the analysis of ChIP-chip data from tiling arrays by incorporating the correlation structure. Pac Symp Biocomput 515–526.

115. ValouevA, JohnsonDS, SundquistA, MedinaC, AntonE, et al. (2008) Genome-wide analysis of transcription factor binding sites based on ChIP-seq data. Nat Methods 5: 829–834.

116. JiH, JiangH, MaW, JohnsonDS, MyersRM, et al. (2008) An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat Biotechnol 26: 1293–1300.

117. KuanPF, ChungD, PanG, ThomsonJA, StewartR, et al. (2011) A statistical framework for the analysis of ChIP-seq data. J Am Stat Assoc 106: 891–903.

118. LiangK, KeleşS (2012) Normalization of ChIP-seq data with control. BMC Bioinformatics 13: 199.

119. HomannOR, JohnsonAD (2010) MochiView: versatile software for genome browsing and DNA motif analysis. BMC Biol 8: 49 doi: 10.1186/1741-7007-8-49

120. AleksicJ, RussellS (2009) ChIPing away at the genome: the new frontier travel guide. Mol Biosyst 5: 1421–1428.

121. BaileyTL, ElkanC (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings on the Second International Conference on Intelligent Systems for Molecular Biology 28–36.

122. SchneiderTD, StormoGD, YarusMA, GoldL (1984) Delila system tools. Nucleic Acids Res 12: 129–140.

123. EdgarR, DomrachevM, LashAE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30: 207–210.

124. NeuwegerH, PersickeM, AlbaumSP, BekelT, DondrupM, et al. (2009) Visualizing post genomics data-sets on customized pathway maps by ProMeTra - aeration-dependent gene expression and metabolism of Corynebacterium glutamicum as an example. BMC Syst Biol 3: 82.

125. LiH, LovciMT, KwonYS, RosenfeldMG, FuXD, et al. (2008) Determination of tag density required for digital transcriptome analysis: application to an androgen-sensitive prostate cancer model. Proc Natl Acad Sci USA 105: 20179–20184.

126. WuH, TysonKL, ColeJA, BusbySJ (1998) Regulation of transcription initiation at the Escherichia coli nir operon promoter: a new mechanism to account for co-dependence on two transcription factors. Mol Microbiol 27: 493–505.

127. SawersG, KaiserM, SirkoA, FreundlichM (1997) Transcriptional activation by FNR and CRP: reciprocity of binding-site recognition. Mol Microbiol 23: 835–845.

128. SawersG, SuppmannB (1992) Anaerobic induction of pyruvate formate-lyase gene expression is mediated by the ArcA and FNR proteins. J Bacteriol 174: 3474–3478.

129. GreenJ, BaldwinML, RichardsonJ (1998) Downregulation of Escherichia coli yfiD expression by FNR occupying a site at −93.5 involves the AR1-containing face of FNR. Mol Microbiol 29: 1113–1123.

130. TysonKL, BellAI, ColeJA, BusbySJ (1993) Definition of nitrite and nitrate response elements at the anaerobically inducible Escherichia coli nirB promoter: interactions between FNR and NarL. Mol Microbiol 7: 151–157.

131. BonnefoyV, DeMossJA (1992) Identification of functional cis-acting sequences involved in regulation of narK gene expression in Escherichia coli. Mol Microbiol 6: 3595–3602.

132. PartridgeJD, BrowningDF, XuM, NewnhamLJ, ScottC, et al. (2008) Characterization of the Escherichia coli K-12 ydhYVWXUT operon: regulation by FNR, NarL and NarP. Microbiology 154: 608–618.

133. Ziegelhoffer EC (1996) FNR-dependent transcriptional regulation in Escherichia coli: in vitro investigations of DNA binding and transcriptional activation and repression. Madison, WI: University of Wisconsin - Madison.

134. FilenkoNA, BrowningDF, ColeJA (2005) Transcriptional regulation of a hybrid cluster (prismane) protein. Biochem Soc Trans 33: 195–197.

135. Shalel-LevanonS, SanK-Y, BennettGN (2005) Effect of ArcA and FNR on the expression of genes related to the oxygen regulation and the glycolysis pathway in Escherichia coli under microaerobic growth conditions. Biotechnol Bioeng 92: 147–159.

136. GolbyP, KellyDJ, GuestJR, AndrewsSC (1998) Transcriptional regulation and organization of the dcuA and dcuB genes, encoding homologous anaerobic C4-dicarboxylate transporters in Escherichia coli. J Bacteriol 180: 6586–6596.

137. ZientzE, JanauschIG, SixS, UndenG (1999) Functioning of DcuC as the C4-dicarboxylate carrier during glucose fermentation by Escherichia coli. J Bacteriol 181: 3716–3720.

138. MettertEL, KileyPJ (2007) Contributions of [4Fe-4S]-FNR and integration host factor to fnr transcriptional regulation. J Bacteriol 189: 3036–3043.

139. GreenJ, GuestJR (1994) Regulation of transcription at the ndh promoter of Escherichia coli by FNR and novel factors. Mol Microbiol 12: 433–444.

140. QuailMA, HaydonDJ, GuestJR (1994) The pdhR-aceEF-lpd operon of Escherichia coli expresses the pyruvate dehydrogenase complex. Mol Microbiol 12: 95–104.

141. GovantesF, OrjaloAV, GunsalusRP (2000) Interplay between three global regulatory proteins mediates oxygen regulation of the Escherichia coli cytochrome d oxidase (cydAB) operon. Mol Microbiol 38: 1061–1073.

142. KimD, HongJS-J, QiuY, NagarajanH, SeoJ-H, et al. (2012) Comparative analysis of regulatory elements between Escherichia coli and Klebsiella pneumoniae by genome-wide transcription start site profiling. PLoS Genet 8: e1002867.

143. GibertI, BarbéJ (1990) Cyclic AMP stimulates transcription of the structural gene of the outer-membrane protein OmpA of Escherichia coli. FEMS Microbiol Lett 56: 307–311.

144. ShinD, ChoN, HeuS, RyuS (2003) Selective regulation of ptsG expression by Fis. Formation of either activating or repressing nucleoprotein complex in response to glucose. J Biol Chem 278: 14776–14781.

145. ZhengD, ConstantinidouC, HobmanJL, MinchinSD (2004) Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res 32: 5874–5893.

146. PostmaPW, LengelerJW, JacobsonGR (1993) Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57: 543–594.

147. HutchingsMI, DrabbleWT (2000) Regulation of the divergent guaBA and xseA promoters of Escherichia coli by the cyclic AMP receptor protein. FEMS Microbiol Lett 187: 115–122.

148. FengY, CronanJE (2010) Overlapping repressor binding sites result in additive regulation of Escherichia coli FadH by FadR and ArcA. J Bacteriol 192: 4289–4299.

149. Nørregaard-MadsenM, MygindB, PedersenR, Valentin-HansenP, Søgaard-AndersenL (1994) The gene encoding the periplasmic cyclophilin homologue, PPIase A, in Escherichia coli, is expressed from four promoters, three of which are activated by the cAMP-CRP complex and negatively regulated by the CytR repressor. Mol Microbiol 14: 989–997.

150. PeekhausN, ConwayT (1998) Positive and negative transcriptional regulation of the Escherichia coli gluconate regulon gene gntT by GntR and the cyclic AMP (cAMP)-cAMP receptor protein complex. J Bacteriol 180: 1777–1785.

151. ZhangZ, GossetG, BaraboteR, GonzalezCS, CuevasWA, et al. (2005) Functional interactions between the carbon and iron utilization regulators, Crp and Fur, in Escherichia coli. J Bacteriol 187: 980–990.

152. ChenZ, LewisKA, ShultzabergerRK, LyakhovIG, ZhengM, et al. (2007) Discovery of Fur binding site clusters in Escherichia coli by information theory models. Nucleic Acids Res 35: 6762–6777.

153. LavrrarJL, ChristoffersenCA, McIntoshMA (2002) Fur-DNA interactions at the bidirectional fepDGC-entS promoter region in Escherichia coli. J Mol Biol 322: 983–995.

154. ChristoffersenCA, BrickmanTJ, McIntoshMA (2001) Regulatory architecture of the iron-regulated fepD-ybdA bidirectional promoter region in Escherichia coli. J Bacteriol 183: 2059–2070.

155. BrickmanTJ, OzenbergerBA, McIntoshMA (1990) Regulation of divergent transcription from the iron-responsive fepB-entC promoter-operator regions in Escherichia coli. J Mol Biol 212: 669–682.

156. ZhangJ, ZeunerY, KleefeldA, UndenG, JanshoffA (2004) Multiple site-specific binding of Fis protein to Escherichia coli nuoA-N promoter DNA and its impact on DNA topology visualised by means of scanning force microscopy. Chembiochem 5: 1286–1289.

157. YoungGM, PostleK (1994) Repression of tonB transcription during anaerobic growth requires Fur binding at the promoter and a second factor binding upstream. Mol Microbiol 11: 943–954.

158. VassinovaN, KozyrevD (2000) A method for direct cloning of Fur-regulated genes: identification of seven new Fur-regulated loci in Escherichia coli. Microbiology 146: 3171–3182.

159. StojiljkovicI, BäumlerAJ, HantkeK (1994) Fur regulon in gram-negative bacteria. Identification and characterization of new iron-regulated Escherichia coli genes by a fur titration assay. J Mol Biol 236: 531–545.

160. McHughJP, Rodríguez-QuiñonesF, Abdul-TehraniH, SvistunenkoDA, PooleRK, et al. (2003) Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis. J Biol Chem 278: 29478–29486.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#