Culture-induced recurrent epigenetic aberrations in human pluripotent stem cells
hPSCs were shown to acquire genetic aberrations during their growth in culture. The aberrations are non-random and positively selected, by altering multiple cellular phenotypes. Similarly to genetic mutations, epigenetic aberrations may also change gene expression levels, leading to altered cellular behaviors, as seen in tumors. In this study we focus on methylation changes, and we showed that there is a set of genes which are recurrently hypermethylated and silenced in high passage cells. One of these genes, TSPYL5, was shown to be downregulated by hypermethylation in multiple cancer types. We showed that upon its silencing in hPSC, differentiation genes and tumor-suppressor genes are downregulated, and pluripotency- and growth promoting genes are upregulated, which drive the positive selection. These results highlight another challenge faced by hPSC in regard to maintenance of intact gene expression program, and emphasize the role of epimutations described in cancer cells also to hPSCs.
Vyšlo v časopise:
Culture-induced recurrent epigenetic aberrations in human pluripotent stem cells. PLoS Genet 13(8): e32767. doi:10.1371/journal.pgen.1006979
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1006979
Souhrn
hPSCs were shown to acquire genetic aberrations during their growth in culture. The aberrations are non-random and positively selected, by altering multiple cellular phenotypes. Similarly to genetic mutations, epigenetic aberrations may also change gene expression levels, leading to altered cellular behaviors, as seen in tumors. In this study we focus on methylation changes, and we showed that there is a set of genes which are recurrently hypermethylated and silenced in high passage cells. One of these genes, TSPYL5, was shown to be downregulated by hypermethylation in multiple cancer types. We showed that upon its silencing in hPSC, differentiation genes and tumor-suppressor genes are downregulated, and pluripotency- and growth promoting genes are upregulated, which drive the positive selection. These results highlight another challenge faced by hPSC in regard to maintenance of intact gene expression program, and emphasize the role of epimutations described in cancer cells also to hPSCs.
Zdroje
1. Lamm N, Ben-David U, Golan-Lev T, Storchová Z, Benvenisty N, Kerem B. Genomic Instability in Human Pluripotent Stem Cells Arises from Replicative Stress and Chromosome Condensation Defects. Cell Stem Cell. 2016;18: 253–261. doi: 10.1016/j.stem.2015.11.003 26669899
2. Weissbein U, Benvenisty N, Ben-David U. Genome maintenance in pluripotent stem cells. J Cell Biol. 2014;204: 153–163. doi: 10.1083/jcb.201310135 24446481
3. Baker DEC, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol. 2007;25: 207–215. doi: 10.1038/nbt1285 17287758
4. Werbowetski-Ogilvie TE, Bossé M, Stewart M, Schnerch A, Ramos-Mejia V, Rouleau A, et al. Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol. 2009;27: 91–97. doi: 10.1038/nbt.1516 19122652
5. Mayshar Y, Ben-David U, Lavon N, Biancotti J-C, Yakir B, Clark AT, et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell. Elsevier Inc.; 2010;7: 521–531. doi: 10.1016/j.stem.2010.07.017 20887957
6. Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer. Nature Publishing Group; 2011;11: 268–277. doi: 10.1038/nrc3034 21390058
7. Lund RJ, Närvä E, Lahesmaa R. Genetic and epigenetic stability of human pluripotent stem cells. Nat Rev Genet. Nature Publishing Group; 2012;13: 732–744. doi: 10.1038/nrg3271 22965355
8. Ben-David U, Arad G, Weissbein U, Mandefro B, Maimon A, Golan-Lev T, et al. Aneuploidy induces profound changes in gene expression, proliferation and tumorigenicity of human pluripotent stem cells. Nat Commun. Nature Publishing Group; 2014;5: 4825. doi: 10.1038/ncomms5825 25198699
9. Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet. 2006;7: 21–33. doi: 10.1038/nrg1748 16369569
10. Esteller M. Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet. 2007;16: R50–R59. doi: 10.1093/hmg/ddm018 17613547
11. Jung Y, Park J, Bang Y-J, Kim T-Y. Gene silencing of TSPYL5 mediated by aberrant promoter methylation in gastric cancers. Lab Invest. 2008;88: 153–160. doi: 10.1038/labinvest.3700706 18059362
12. Kim EJ, Lee SY, Kim TR, Choi SI, Cho EW, Kim KC, et al. TSPYL5 is involved in cell growth and the resistance to radiation in A549 cells via the regulation of p21(WAF1/Cip1) and PTEN/AKT pathway. Biochem Biophys Res Commun. Elsevier Inc.; 2010;392: 448–453. doi: 10.1016/j.bbrc.2010.01.045 20079711
13. Kim T-Y, Zhong S, Fields CR, Kim JH, Robertson KD. Epigenomic profiling reveals novel and frequent targets of aberrant DNA methylation-mediated silencing in malignant glioma. Cancer Res. 2006;66: 7490–7501. doi: 10.1158/0008-5472.CAN-05-4552 16885346
14. Oka D, Yamashita S, Tomioka T, Nakanishi Y, Kato H, Kaminishi M, et al. The presence of aberrant DNA methylation in noncancerous esophageal mucosae in association with smoking history: a target for risk diagnosis and prevention of esophageal cancers. Cancer. 2009;115: 3412–3426. doi: 10.1002/cncr.24394 19472401
15. Nazor KL, Altun G, Lynch C, Tran H, Harness J V, Slavin I, et al. Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. Cell Stem Cell. 2012;10: 620–634. doi: 10.1016/j.stem.2012.02.013 22560082
16. Ben-David U, Mayshar Y, Benvenisty N. Virtual karyotyping of pluripotent stem cells on the basis of their global gene expression profiles. Nat Protoc. Nature Publishing Group; 2013;8: 989–997. doi: 10.1038/nprot.2013.051 23619890
17. Mallon BS, Chenoweth JG, Johnson KR, Hamilton RS, Tesar PJ, Yavatkar AS, et al. StemCellDB: the human pluripotent stem cell database at the National Institutes of Health. Stem Cell Res. Elsevier B.V.; 2013;10: 57–66. doi: 10.1016/j.scr.2012.09.002 23117585
18. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2013;41: D991–D995. doi: 10.1093/nar/gks1193 23193258
19. Qiu X, Hu B, Huang Y, Deng Y, Wang X, Zheng F. Hypermethylation of ACP1, BMP4, and TSPYL5 in Hepatocellular Carcinoma and Their Potential Clinical Significance. Dig Dis Sci. 2016;61: 149–157. doi: 10.1007/s10620-015-3878-3 26386860
20. Witek Ł, Janikowski T, Bodzek P, Olejek A, Mazurek U. Expression of tumor suppressor genes related to the cell cycle in endometrial cancer patients. Adv Med Sci. Medical University of Bialystok; 2016;61: 317–324. doi: 10.1016/j.advms.2016.04.001 27218895
21. Vassena R, Boue S, Gonzalez-Roca E, Aran B, Auer H, Veiga A, et al. Waves of early transcriptional activation and pluripotency program initiation during human preimplantation development. Development. 2011;138: 3699–3709. doi: 10.1242/dev.064741 21775417
22. Theunissen TW, Powell BE, Wang H, Mitalipova M, Faddah DA, Reddy J, et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell. Elsevier Inc.; 2014;15: 471–487. doi: 10.1016/j.stem.2014.07.002 25090446
23. Garitaonandia I, Amir H, Boscolo FS, Wambua GK, Schultheisz HL, Sabatini K, et al. Increased Risk of Genetic and Epigenetic Instability in Human Embryonic Stem Cells Associated with Specific Culture Conditions. Roh T-Y, editor. PLoS One. 2015;10: e0118307. doi: 10.1371/journal.pone.0118307 25714340
24. Liu M, Ingle JN, Fridley BL, Buzdar AU, Robson ME, Kubo M, et al. TSPYL5 SNPs: association with plasma estradiol concentrations and aromatase expression. Mol Endocrinol. 2013;27: 657–670. doi: 10.1210/me.2012-1397 23518928
25. Park Y-J, Luger K. Structure and function of nucleosome assembly proteins. Biochem Cell Biol. 2006;84: 549–558. doi: 10.1139/o06-088 16936827
26. Oosterhuis JW, Looijenga LHJ. Testicular germ-cell tumours in a broader perspective. Nat Rev Cancer. 2005;5: 210–222. doi: 10.1038/nrc1568 15738984
27. Peterson SE, Loring JF. Genomic Instability in Pluripotent Stem Cells: Implications for Clinical Applications. J Biol Chem. 2014;289: 4578–4584. doi: 10.1074/jbc.R113.516419 24362040
28. Johannesson B, Sagi I, Gore A, Paull D, Yamada M, Golan-Lev T, et al. Comparable Frequencies of Coding Mutations and Loss of Imprinting in Human Pluripotent Cells Derived by Nuclear Transfer and Defined Factors. Cell Stem Cell. 2014;15: 634–642. doi: 10.1016/j.stem.2014.10.002 25517467
29. Pick M, Stelzer Y, Bar-Nur O, Mayshar Y, Eden A, Benvenisty N. Clone- and gene-specific aberrations of parental imprinting in human induced pluripotent stem cells. Stem Cells. 2009;27: 2686–2690. doi: 10.1002/stem.205 19711451
30. Bruck T, Benvenisty N. Meta-analysis of the heterogeneity of X chromosome inactivation in human pluripotent stem cells. Stem Cell Res. Elsevier B.V.; 2011;6: 187–193. doi: 10.1016/j.scr.2010.12.001 21276761
31. Mekhoubad S, Bock C, de Boer AS, Kiskinis E, Meissner A, Eggan K. Erosion of dosage compensation impacts human iPSC disease modeling. Cell Stem Cell. Elsevier Inc.; 2012;10: 595–609. doi: 10.1016/j.stem.2012.02.014 22560080
32. Shipony Z, Mukamel Z, Cohen NM, Landan G, Chomsky E, Zeliger SR, et al. Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells. Nature. Nature Publishing Group; 2014;513: 115–119. doi: 10.1038/nature13458 25043040
33. Liao J, Karnik R, Gu H, Ziller MJ, Clement K, Tsankov AM, et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat Genet. Nature Publishing Group; 2015;47: 469–478. doi: 10.1038/ng.3258 25822089
34. Ben-David U, Mayshar Y, Benvenisty N. Large-scale analysis reveals acquisition of lineage-specific chromosomal aberrations in human adult stem cells. Cell Stem Cell. Elsevier Inc.; 2011;9: 97–102. doi: 10.1016/j.stem.2011.06.013 21816361
35. Tesarova L, Simara P, Stejskal S, Koutna I. The Aberrant DNA Methylation Profile of Human Induced Pluripotent Stem Cells Is Connected to the Reprogramming Process and Is Normalized During In Vitro Culture. Lako M, editor. PLoS One. 2016;11: e0157974. doi: 10.1371/journal.pone.0157974 27336948
36. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. BioMed Central Ltd; 2013;14: R36. doi: 10.1186/gb-2013-14-4-r36 23618408
37. Trapnell C, Williams B a, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. Nature Publishing Group; 2010;28: 511–515. doi: 10.1038/nbt.1621 20436464
38. Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J, et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34: 267–273. doi: 10.1038/ng1180 12808457
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2017 Číslo 8
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- Deciphering the genetic control of gene expression following antigen stimulation
- Culture-induced recurrent epigenetic aberrations in human pluripotent stem cells
- Positional cloning of quantitative trait nucleotides for blood pressure and cardiac QT-interval by targeted CRISPR/Cas9 editing of a novel long non-coding RNA
- PRRG4 function reveals that Robo trafficking is evolutionarily conserved