Environmentally-relevant exposure to diethylhexyl phthalate (DEHP) alters regulation of double-strand break formation and crossover designation leading to germline dysfunction in Caenorhabditis elegans
Autoři:
Luciann Cuenca aff001; Nara Shin aff001; Laura I. Lascarez-Lagunas aff001; Marina Martinez-Garcia aff001; Saravanapriah Nadarajan aff001; Rajendiran Karthikraj aff002; Kurunthachalam Kannan aff002; Mónica P. Colaiácovo aff001
Působiště autorů:
Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
aff001; Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York, United States of America
aff002; Department of Pediatrics, New York University School of Medicine, New York City, New York, United States of America
aff003
Vyšlo v časopise:
Environmentally-relevant exposure to diethylhexyl phthalate (DEHP) alters regulation of double-strand break formation and crossover designation leading to germline dysfunction in Caenorhabditis elegans. PLoS Genet 16(1): e32767. doi:10.1371/journal.pgen.1008529
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1008529
Souhrn
Exposure to diethylhexyl phthalate (DEHP), the most abundant plasticizer used in the production of polyvinyl-containing plastics, has been associated to adverse reproductive health outcomes in both males and females. While the effects of DEHP on reproductive health have been widely investigated, the molecular mechanisms by which exposure to environmentally-relevant levels of DEHP and its metabolites impact the female germline in the context of a multicellular organism have remained elusive. Using the Caenorhabditis elegans germline as a model for studying reprotoxicity, we show that exposure to environmentally-relevant levels of DEHP and its metabolites results in increased meiotic double-strand breaks (DSBs), altered DSB repair progression, activation of p53/CEP-1-dependent germ cell apoptosis, defects in chromosome remodeling at late prophase I, aberrant chromosome morphology in diakinesis oocytes, increased chromosome non-disjunction and defects during early embryogenesis. Exposure to DEHP results in a subset of nuclei held in a DSB permissive state in mid to late pachytene that exhibit defects in crossover (CO) designation/formation. In addition, these nuclei show reduced Polo-like kinase-1/2 (PLK-1/2)-dependent phosphorylation of SYP-4, a synaptonemal complex (SC) protein. Moreover, DEHP exposure leads to germline-specific change in the expression of prmt-5, which encodes for an arginine methyltransferase, and both increased SC length and altered CO designation levels on the X chromosome. Taken together, our data suggest a model by which impairment of a PLK-1/2-dependent negative feedback loop set in place to shut down meiotic DSBs, together with alterations in chromosome structure, contribute to the formation of an excess number of DSBs and altered CO designation levels, leading to genomic instability.
Klíčová slova:
Chromosome structure and function – Caenorhabditis elegans – Gonads – Apoptosis – Germ cells – Metabolites – X chromosomes – Phthalates
Zdroje
1. Wilcox AJ, Weinberg CR, O'Connor JF, Baird DD, Schlatterer JP, Canfield RE, et al. Incidence of early loss of pregnancy. N Engl J Med. 1988;319(4):189–94. Epub 1988/07/28. doi: 10.1056/NEJM198807283190401 3393170.
2. Wapner RJ. Genetics of stillbirth. Clin Obstet Gynecol. 2010;53(3):628–34. Epub 2010/07/28. doi: 10.1097/GRF.0b013e3181ee2793 20661047.
3. Hassold T, Abruzzo M, Adkins K, Griffin D, Merrill M, Millie E, et al. Human aneuploidy: incidence, origin, and etiology. Environ Mol Mutagen. 1996;28(3):167–75. Epub 1996/01/01. doi: 10.1002/(SICI)1098-2280(1996)28:3<167::AID-EM2>3.0.CO;2-B 8908177.
4. Kuliev A, Zlatopolsky Z, Kirillova I, Spivakova J, Cieslak Janzen J. Meiosis errors in over 20,000 oocytes studied in the practice of preimplantation aneuploidy testing. Reprod Biomed Online. 2011;22(1):2–8. Epub 2010/12/01. doi: 10.1016/j.rbmo.2010.08.014 21115270.
5. Ford HB, Schust DJ. Recurrent pregnancy loss: etiology, diagnosis, and therapy. Rev Obstet Gynecol. 2009;2(2):76–83. Epub 2009/07/18. 19609401; PubMed Central PMCID: PMC2709325.
6. Grande SW, Andrade AJ, Talsness CE, Grote K, Chahoud I. A dose-response study following in utero and lactational exposure to di(2-ethylhexyl)phthalate: effects on female rat reproductive development. Toxicological sciences: an official journal of the Society of Toxicology. 2006;91(1):247–54. doi: 10.1093/toxsci/kfj128 16476687.
7. McKee RH, Butala JH, David RM, Gans G. NTP center for the evaluation of risks to human reproduction reports on phthalates: addressing the data gaps. Reproductive toxicology. 2004;18(1):1–22. doi: 10.1016/j.reprotox.2003.09.002 15013060.
8. Wittassek M, Koch HM, Angerer J, Bruning T. Assessing exposure to phthalates—the human biomonitoring approach. Mol Nutr Food Res. 2011;55(1):7–31. doi: 10.1002/mnfr.201000121 20564479.
9. Koo HJ, Lee BM. Estimated exposure to phthalates in cosmetics and risk assessment. J Toxicol Environ Health A. 2004;67(23–24):1901–14. Epub 2004/10/30. doi: 10.1080/15287390490513300 15513891.
10. Zeng F, Cui K, Xie Z, Liu M, Li Y, Lin Y, et al. Occurrence of phthalate esters in water and sediment of urban lakes in a subtropical city, Guangzhou, South China. Environ Int. 2008;34(3):372–80. Epub 2007/10/05. doi: 10.1016/j.envint.2007.09.002 17915327.
11. Peijnenburg WJ, Struijs J. Occurrence of phthalate esters in the environment of The Netherlands. Ecotoxicol Environ Saf. 2006;63(2):204–15. Epub 2005/09/20. doi: 10.1016/j.ecoenv.2005.07.023 16168482.
12. Kay VR, Chambers C, Foster WG. Reproductive and developmental effects of phthalate diesters in females. Crit Rev Toxicol. 2013;43(3):200–19. Epub 2013/02/15. doi: 10.3109/10408444.2013.766149 23405971; PubMed Central PMCID: PMC3604737.
13. White RD, Carter DE, Earnest D, Mueller J. Absorption and metabolism of three phthalate diesters by the rat small intestine. Food Cosmet Toxicol. 1980;18(4):383–6. Epub 1980/08/01. doi: 10.1016/0015-6264(80)90194-7 7461517.
14. Rusyn I, Peters JM, Cunningham ML. Modes of action and species-specific effects of di-(2-ethylhexyl)phthalate in the liver. Crit Rev Toxicol. 2006;36(5):459–79. Epub 2006/09/07. doi: 10.1080/10408440600779065 16954067; PubMed Central PMCID: PMC2614359.
15. Hirosawa N, Yano K, Suzuki Y, Sakamoto Y. Endocrine disrupting effect of di-(2-ethylhexyl)phthalate on female rats and proteome analyses of their pituitaries. Proteomics. 2006;6(3):958–71. Epub 2006/01/10. doi: 10.1002/pmic.200401344 16400681.
16. Zhang T, Shen W, De Felici M, Zhang XF. Di(2-ethylhexyl)phthalate: Adverse effects on folliculogenesis that cannot be neglected. Environ Mol Mutagen. 2016;57(8):579–88. Epub 2016/08/18. doi: 10.1002/em.22037 27530864.
17. Desdoits-Lethimonier C, Albert O, Le Bizec B, Perdu E, Zalko D, Courant F, et al. Human testis steroidogenesis is inhibited by phthalates. Hum Reprod. 2012;27(5):1451–9. Epub 2012/03/10. doi: 10.1093/humrep/des069 22402212.
18. Rowdhwal SSS, Chen J. Toxic Effects of Di-2-ethylhexyl Phthalate: An Overview. Biomed Res Int. 2018;2018:1750368. Epub 2018/04/24. doi: 10.1155/2018/1750368 29682520; PubMed Central PMCID: PMC5842715.
19. Tang X, Wu S, Shen L, Wei Y, Cao X, Wang Y, et al. Di-(2-ethylhexyl) phthalate (DEHP)-induced testicular toxicity through Nrf2-mediated Notch1 signaling pathway in Sprague-Dawley rats. Environ Toxicol. 2018;33(7):720–8. Epub 2018/04/18. doi: 10.1002/tox.22559 29663635.
20. Borch J, Ladefoged O, Hass U, Vinggaard AM. Steroidogenesis in fetal male rats is reduced by DEHP and DINP, but endocrine effects of DEHP are not modulated by DEHA in fetal, prepubertal and adult male rats. Reprod Toxicol. 2004;18(1):53–61. Epub 2004/03/12. doi: 10.1016/j.reprotox.2003.10.011 15013064.
21. Parks LG, Ostby JS, Lambright CR, Abbott BD, Klinefelter GR, Barlow NJ, et al. The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicol Sci. 2000;58(2):339–49. Epub 2000/12/02. doi: 10.1093/toxsci/58.2.339 11099646.
22. Pan G, Hanaoka T, Yoshimura M, Zhang S, Wang P, Tsukino H, et al. Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): a cross-sectional study in China. Environ Health Perspect. 2006;114(11):1643–8. Epub 2006/11/17. doi: 10.1289/ehp.9016 17107847; PubMed Central PMCID: PMC1665432.
23. Hannon PR, Peretz J, Flaws JA. Daily exposure to Di(2-ethylhexyl) phthalate alters estrous cyclicity and accelerates primordial follicle recruitment potentially via dysregulation of the phosphatidylinositol 3-kinase signaling pathway in adult mice. Biol Reprod. 2014;90(6):136. Epub 2014/05/09. doi: 10.1095/biolreprod.114.119032 24804967; PubMed Central PMCID: PMC4435463.
24. Davis BJ, Maronpot RR, Heindel JJ. Di-(2-ethylhexyl) phthalate suppresses estradiol and ovulation in cycling rats. Toxicol Appl Pharmacol. 1994;128(2):216–23. Epub 1994/10/01. doi: 10.1006/taap.1994.1200 7940536.
25. Pocar P, Fiandanese N, Berrini A, Secchi C, Borromeo V. Maternal exposure to di(2-ethylhexyl)phthalate (DEHP) promotes the transgenerational inheritance of adult-onset reproductive dysfunctions through the female germline in mice. Toxicol Appl Pharmacol. 2017;322:113–21. Epub 2017/03/14. doi: 10.1016/j.taap.2017.03.008 28286118.
26. Upson K, Sathyanarayana S, De Roos AJ, Thompson ML, Scholes D, Dills R, et al. Phthalates and risk of endometriosis. Environ Res. 2013;126:91–7. Epub 2013/07/31. doi: 10.1016/j.envres.2013.07.003 23890968; PubMed Central PMCID: PMC3905445.
27. Do RP, Stahlhut RW, Ponzi D, Vom Saal FS, Taylor JA. Non-monotonic dose effects of in utero exposure to di(2-ethylhexyl) phthalate (DEHP) on testicular and serum testosterone and anogenital distance in male mouse fetuses. Reprod Toxicol. 2012;34(4):614–21. Epub 2012/10/09. doi: 10.1016/j.reprotox.2012.09.006 23041310; PubMed Central PMCID: PMC3543148.
28. Li LH, Jester WF Jr., Laslett AL, Orth JM. A single dose of Di-(2-ethylhexyl) phthalate in neonatal rats alters gonocytes, reduces sertoli cell proliferation, and decreases cyclin D2 expression. Toxicol Appl Pharmacol. 2000;166(3):222–9. Epub 2000/07/25. doi: 10.1006/taap.2000.8972 10906286.
29. Allard P, Kleinstreuer NC, Knudsen TB, Colaiacovo MP. A C. elegans screening platform for the rapid assessment of chemical disruption of germline function. Environ Health Perspect. 2013;121(6):717–24. Epub 2013/04/23. doi: 10.1289/ehp.1206301 23603051; PubMed Central PMCID: PMC3672921.
30. Allard P, Colaiacovo MP. Mechanistic insights into the action of Bisphenol A on the germline using C. elegans. Cell Cycle. 2011;10(2):183–4. Epub 2011/01/14. doi: 10.4161/cc.10.2.14478 21228622.
31. Allard P, Colaiacovo MP. Bisphenol A impairs the double-strand break repair machinery in the germline and causes chromosome abnormalities. Proc Natl Acad Sci U S A. 2010;107(47):20405–10. Epub 2010/11/10. doi: 10.1073/pnas.1010386107 21059909; PubMed Central PMCID: PMC2996676.
32. Chen Y, Shu L, Qiu Z, Lee DY, Settle SJ, Que Hee S, et al. Exposure to the BPA-Substitute Bisphenol S Causes Unique Alterations of Germline Function. PLoS Genet. 2016;12(7):e1006223. Epub 2016/07/30. doi: 10.1371/journal.pgen.1006223 27472198; PubMed Central PMCID: PMC4966967.
33. Shin N, Cuenca L, Karthikraj R, Kannan K, Colaiacovo MP. Assessing effects of germline exposure to environmental toxicants by high-throughput screening in C. elegans. PLoS Genet. 2019;15(2):e1007975. Epub 2019/02/15. doi: 10.1371/journal.pgen.1007975 30763314; PubMed Central PMCID: PMC6375566.
34. Liu JC, Lai FN, Li L, Sun XF, Cheng SF, Ge W, et al. Di (2-ethylhexyl) phthalate exposure impairs meiotic progression and DNA damage repair in fetal mouse oocytes in vitro. Cell Death Dis. 2017;8(8):e2966. Epub 2017/08/05. doi: 10.1038/cddis.2017.350 28771232; PubMed Central PMCID: PMC5596541.
35. Watanabe M, Mitani N, Ishii N, Miki K. A mutation in a cuticle collagen causes hypersensitivity to the endocrine disrupting chemical, bisphenol A, in Caenorhabditis elegans. Mutat Res. 2005;570(1):71–80. Epub 2005/02/01. doi: 10.1016/j.mrfmmm.2004.10.005 15680404.
36. Hodgkin J, Doniach T. Natural variation and copulatory plug formation in Caenorhabditis elegans. Genetics. 1997;146(1):149–64. Epub 1997/05/01. 9136008; PubMed Central PMCID: PMC1207933.
37. MacQueen AJ, Colaiacovo MP, McDonald K, Villeneuve AM. Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev. 2002;16(18):2428–42. Epub 2002/09/17. doi: 10.1101/gad.1011602 12231631; PubMed Central PMCID: PMC187442.
38. Yokoo R, Zawadzki KA, Nabeshima K, Drake M, Arur S, Villeneuve AM. COSA-1 reveals robust homeostasis and separable licensing and reinforcement steps governing meiotic crossovers. Cell. 2012;149(1):75–87. Epub 2012/04/03. doi: 10.1016/j.cell.2012.01.052 22464324; PubMed Central PMCID: PMC3339199.
39. Ito Y, Kamijima M, Nakajima T. Di(2-ethylhexyl) phthalate-induced toxicity and peroxisome proliferator-activated receptor alpha: a review. Environ Health Prev Med. 2019;24(1):47. Epub 2019/07/08. doi: 10.1186/s12199-019-0802-z 31279339; PubMed Central PMCID: PMC6612219.
40. Ye X, Pierik FH, Hauser R, Duty S, Angerer J, Park MM, et al. Urinary metabolite concentrations of organophosphorous pesticides, bisphenol A, and phthalates among pregnant women in Rotterdam, the Netherlands: the Generation R study. Environ Res. 2008;108(2):260–7. Epub 2008/09/09. doi: 10.1016/j.envres.2008.07.014 18774129; PubMed Central PMCID: PMC2628162.
41. Du YY, Fang YL, Wang YX, Zeng Q, Guo N, Zhao H, et al. Follicular fluid and urinary concentrations of phthalate metabolites among infertile women and associations with in vitro fertilization parameters. Reprod Toxicol. 2016;61:142–50. Epub 2016/04/14. doi: 10.1016/j.reprotox.2016.04.005 27067915.
42. Woglar A, Daryabeigi A, Adamo A, Habacher C, Machacek T, La Volpe A, et al. Matefin/SUN-1 phosphorylation is part of a surveillance mechanism to coordinate chromosome synapsis and recombination with meiotic progression and chromosome movement. PLoS Genet. 2013;9(3):e1003335. Epub 2013/03/19. doi: 10.1371/journal.pgen.1003335 23505384; PubMed Central PMCID: PMC3591285.
43. Penkner AM, Fridkin A, Gloggnitzer J, Baudrimont A, Machacek T, Woglar A, et al. Meiotic chromosome homology search involves modifications of the nuclear envelope protein Matefin/SUN-1. Cell. 2009;139(5):920–33. Epub 2009/11/17. doi: 10.1016/j.cell.2009.10.045 19913286.
44. Zuela N, Gruenbaum Y. Matefin/SUN-1 Phosphorylation on Serine 43 Is Mediated by CDK-1 and Required for Its Localization to Centrosomes and Normal Mitosis in C. elegans Embryos. Cells. 2016;5(1). Epub 2016/03/02. doi: 10.3390/cells5010008 26927181; PubMed Central PMCID: PMC4810093.
45. Horan TS, Pulcastro H, Lawson C, Gerona R, Martin S, Gieske MC, et al. Replacement Bisphenols Adversely Affect Mouse Gametogenesis with Consequences for Subsequent Generations. Curr Biol. 2018;28(18):2948–54 e3. Epub 2018/09/18. doi: 10.1016/j.cub.2018.06.070 30220498; PubMed Central PMCID: PMC6156992.
46. Tzur YB, Egydio de Carvalho C, Nadarajan S, Van Bostelen I, Gu Y, Chu DS, et al. LAB-1 targets PP1 and restricts Aurora B kinase upon entrance into meiosis to promote sister chromatid cohesion. PLoS Biol. 2012;10(8):e1001378. Epub 2012/08/29. doi: 10.1371/journal.pbio.1001378 22927794; PubMed Central PMCID: PMC3424243.
47. de Carvalho CE, Zaaijer S, Smolikov S, Gu Y, Schumacher JM, Colaiacovo MP. LAB-1 antagonizes the Aurora B kinase in C. elegans. Genes Dev. 2008;22(20):2869–85. Epub 2008/10/17. doi: 10.1101/gad.1691208 18923084; PubMed Central PMCID: PMC2569883.
48. Schumacher B, Hofmann K, Boulton S, Gartner A. The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis. Curr Biol. 2001;11(21):1722–7. Epub 2001/11/07. doi: 10.1016/s0960-9822(01)00534-6 11696333.
49. Smolikov S, Eizinger A, Hurlburt A, Rogers E, Villeneuve AM, Colaiacovo MP. Synapsis-defective mutants reveal a correlation between chromosome conformation and the mode of double-strand break repair during Caenorhabditis elegans meiosis. Genetics. 2007;176(4):2027–33. Epub 2007/06/15. doi: 10.1534/genetics.107.076968 17565963; PubMed Central PMCID: PMC1950611.
50. Shinohara M, Gasior SL, Bishop DK, Shinohara A. Tid1/Rdh54 promotes colocalization of rad51 and dmc1 during meiotic recombination. Proc Natl Acad Sci U S A. 2000;97(20):10814–9. Epub 2000/09/27. doi: 10.1073/pnas.97.20.10814 11005857; PubMed Central PMCID: PMC27106.
51. Mets DG, Meyer BJ. Condensins regulate meiotic DNA break distribution, thus crossover frequency, by controlling chromosome structure. Cell. 2009;139(1):73–86. Epub 2009/09/29. doi: 10.1016/j.cell.2009.07.035 19781752; PubMed Central PMCID: PMC2785808.
52. Stamper EL, Rodenbusch SE, Rosu S, Ahringer J, Villeneuve AM, Dernburg AF. Identification of DSB-1, a protein required for initiation of meiotic recombination in Caenorhabditis elegans, illuminates a crossover assurance checkpoint. PLoS Genet. 2013;9(8):e1003679. Epub 2013/08/31. doi: 10.1371/journal.pgen.1003679 23990794; PubMed Central PMCID: PMC3749324.
53. Nadarajan S, Lambert TJ, Altendorfer E, Gao J, Blower MD, Waters JC, et al. Polo-like kinase-dependent phosphorylation of the synaptonemal complex protein SYP-4 regulates double-strand break formation through a negative feedback loop. Elife. 2017;6. Epub 2017/03/28. doi: 10.7554/eLife.23437 28346135; PubMed Central PMCID: PMC5423773.
54. Schild-Prufert K, Saito TT, Smolikov S, Gu Y, Hincapie M, Hill DE, et al. Organization of the synaptonemal complex during meiosis in Caenorhabditis elegans. Genetics. 2011;189(2):411–21. Epub 2011/08/16. doi: 10.1534/genetics.111.132431 21840865; PubMed Central PMCID: PMC3189812.
55. Smolikov S, Eizinger A, Schild-Prufert K, Hurlburt A, McDonald K, Engebrecht J, et al. SYP-3 restricts synaptonemal complex assembly to bridge paired chromosome axes during meiosis in Caenorhabditis elegans. Genetics. 2007;176(4):2015–25. Epub 2007/06/15. doi: 10.1534/genetics.107.072413 17565948; PubMed Central PMCID: PMC1950610.
56. Bowitch A, Michaels KL, Yu MC, Ferkey DM. The Protein Arginine Methyltransferase PRMT-5 Regulates SER-2 Tyramine Receptor-Mediated Behaviors in Caenorhabditis elegans. G3 (Bethesda). 2018;8(7):2389–98. Epub 2018/05/16. doi: 10.1534/g3.118.200360 29760200; PubMed Central PMCID: PMC6027898.
57. Phillips CM, Wong C, Bhalla N, Carlton PM, Weiser P, Meneely PM, et al. HIM-8 binds to the X chromosome pairing center and mediates chromosome-specific meiotic synapsis. Cell. 2005;123(6):1051–63. Epub 2005/12/20. doi: 10.1016/j.cell.2005.09.035 16360035; PubMed Central PMCID: PMC4435792.
58. Meneely PM, Farago AF, Kauffman TM. Crossover distribution and high interference for both the X chromosome and an autosome during oogenesis and spermatogenesis in Caenorhabditis elegans. Genetics. 2002;162(3):1169–77. Epub 2002/11/28. PubMed Central PMCID: PMC1462340. 12454064
59. Messerlian C, Wylie BJ, Minguez-Alarcon L, Williams PL, Ford JB, Souter IC, et al. Urinary Concentrations of Phthalate Metabolites and Pregnancy Loss Among Women Conceiving with Medically Assisted Reproduction. Epidemiology. 2016;27(6):879–88. Epub 2016/06/15. doi: 10.1097/EDE.0000000000000525 27299194; PubMed Central PMCID: PMC5248552.
60. Ito Y, Yokota H, Wang R, Yamanoshita O, Ichihara G, Wang H, et al. Species differences in the metabolism of di(2-ethylhexyl) phthalate (DEHP) in several organs of mice, rats, and marmosets. Arch Toxicol. 2005;79(3):147–54. Epub 2005/03/31. doi: 10.1007/s00204-004-0615-7 15798888.
61. Martinez-Perez E, Colaiacovo MP. Distribution of meiotic recombination events: talking to your neighbors. Curr Opin Genet Dev. 2009;19(2):105–12. Epub 2009/03/31. doi: 10.1016/j.gde.2009.02.005 19328674; PubMed Central PMCID: PMC2729281.
62. Saito TT, Colaiacovo MP. Regulation of Crossover Frequency and Distribution during Meiotic Recombination. Cold Spring Harb Symp Quant Biol. 2017;82:223–34. Epub 2017/12/10. doi: 10.1101/sqb.2017.82.034132 29222342.
63. Keeney S, Lange J, Mohibullah N. Self-organization of meiotic recombination initiation: general principles and molecular pathways. Annu Rev Genet. 2014;48:187–214. Epub 2014/11/26. doi: 10.1146/annurev-genet-120213-092304 25421598; PubMed Central PMCID: PMC4291115.
64. Garcia V, Gray S, Allison RM, Cooper TJ, Neale MJ. Tel1(ATM)-mediated interference suppresses clustered meiotic double-strand-break formation. Nature. 2015;520(7545):114–8. Epub 2014/12/30. doi: 10.1038/nature13993 25539084.
65. Lemmens BB, Johnson NM, Tijsterman M. COM-1 promotes homologous recombination during Caenorhabditis elegans meiosis by antagonizing Ku-mediated non-homologous end joining. PLoS Genet. 2013;9(2):e1003276. Epub 2013/02/15. doi: 10.1371/journal.pgen.1003276 23408909; PubMed Central PMCID: PMC3567172.
66. Chan RC, Severson AF, Meyer BJ. Condensin restructures chromosomes in preparation for meiotic divisions. J Cell Biol. 2004;167(4):613–25. Epub 2004/11/24. doi: 10.1083/jcb.200408061 15557118; PubMed Central PMCID: PMC2172564.
67. Bowman R, Balukof N, Ford T, Smolikove S. A Novel Role for alpha-Importins and Akirin in Establishment of Meiotic Sister Chromatid Cohesion in Caenorhabditis elegans. Genetics. 2019;211(2):617–35. Epub 2018/12/20. doi: 10.1534/genetics.118.301458 PubMed Central PMCID: PMC6366927. 30563860
68. Ferrandiz N, Barroso C, Telecan O, Shao N, Kim HM, Testori S, et al. Author Correction: Spatiotemporal regulation of Aurora B recruitment ensures release of cohesion during C. elegans oocyte meiosis. Nat Commun. 2018;9(1):3558. Epub 2018/08/31. doi: 10.1038/s41467-018-05848-4 30158624; PubMed Central PMCID: PMC6115334.
69. Ferrandiz N, Barroso C, Telecan O, Shao N, Kim HM, Testori S, et al. Spatiotemporal regulation of Aurora B recruitment ensures release of cohesion during C. elegans oocyte meiosis. Nat Commun. 2018;9(1):834. Epub 2018/02/28. doi: 10.1038/s41467-018-03229-5 29483514; PubMed Central PMCID: PMC5827026.
70. Lu Z, Zhang C, Han C, An Q, Cheng Y, Chen Y, et al. Plasticizer Bis(2-ethylhexyl) Phthalate Causes Meiosis Defects and Decreases Fertilization Ability of Mouse Oocytes in Vivo. J Agric Food Chem. 2019;67(12):3459–68. Epub 2019/03/01. doi: 10.1021/acs.jafc.9b00121 30813722.
71. Zhu C, Zhao J, Bibikova M, Leverson JD, Bossy-Wetzel E, Fan JB, et al. Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol Biol Cell. 2005;16(7):3187–99. Epub 2005/04/22. doi: 10.1091/mbc.E05-02-0167 15843429; PubMed Central PMCID: PMC1165403.
72. Pelisch F, Tammsalu T, Wang B, Jaffray EG, Gartner A, Hay RT. A SUMO-Dependent Protein Network Regulates Chromosome Congression during Oocyte Meiosis. Mol Cell. 2017;65(1):66–77. Epub 2016/12/13. doi: 10.1016/j.molcel.2016.11.001 27939944; PubMed Central PMCID: PMC5222697.
73. Maddox PS, Portier N, Desai A, Oegema K. Molecular analysis of mitotic chromosome condensation using a quantitative time-resolved fluorescence microscopy assay. Proc Natl Acad Sci U S A. 2006;103(41):15097–102. Epub 2006/09/29. doi: 10.1073/pnas.0606993103 17005720; PubMed Central PMCID: PMC1622782.
74. Cortes DB, McNally KL, Mains PE, McNally FJ. The asymmetry of female meiosis reduces the frequency of inheritance of unpaired chromosomes. Elife. 2015;4:e06056. Epub 2015/04/08. doi: 10.7554/eLife.06056 25848744; PubMed Central PMCID: PMC4412107.
75. Lovekamp-Swan T, Davis BJ. Mechanisms of phthalate ester toxicity in the female reproductive system. Environ Health Perspect. 2003;111(2):139–45. Epub 2003/02/08. doi: 10.1289/ehp.5658 12573895; PubMed Central PMCID: PMC1241340.
76. Corton JC, Anderson SP, Stauber A. Central role of peroxisome proliferator-activated receptors in the actions of peroxisome proliferators. Annu Rev Pharmacol Toxicol. 2000;40:491–518. Epub 2000/06/03. doi: 10.1146/annurev.pharmtox.40.1.491 10836145.
77. Atherton HJ, Jones OA, Malik S, Miska EA, Griffin JL. A comparative metabolomic study of NHR-49 in Caenorhabditis elegans and PPAR-alpha in the mouse. FEBS Lett. 2008;582(12):1661–6. Epub 2008/04/26. doi: 10.1016/j.febslet.2008.04.020 18435929.
78. Bonilla E, del Mazo J. Deregulation of the Sod1 and Nd1 genes in mouse fetal oocytes exposed to mono-(2-ethylhexyl) phthalate (MEHP). Reprod Toxicol. 2010;30(3):387–92. Epub 2010/05/05. doi: 10.1016/j.reprotox.2010.04.008 20438828.
79. Rocha BA, Asimakopoulos AG, Barbosa F Jr., Kannan K. Urinary concentrations of 25 phthalate metabolites in Brazilian children and their association with oxidative DNA damage. Sci Total Environ. 2017;586:152–62. Epub 2017/02/09. doi: 10.1016/j.scitotenv.2017.01.193 28174045.
80. Guo Y, Weck J, Sundaram R, Goldstone AE, Louis GB, Kannan K. Urinary concentrations of phthalates in couples planning pregnancy and its association with 8-hydroxy-2'-deoxyguanosine, a biomarker of oxidative stress: longitudinal investigation of fertility and the environment study. Environ Sci Technol. 2014;48(16):9804–11. Epub 2014/07/30. doi: 10.1021/es5024898 25068827; PubMed Central PMCID: PMC4140531.
81. Buck Louis GM, Sundaram R, Sweeney AM, Schisterman EF, Maisog J, Kannan K. Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril. 2014;101(5):1359–66. Epub 2014/02/19. doi: 10.1016/j.fertnstert.2014.01.022 24534276; PubMed Central PMCID: PMC4008721.
82. Yang M, Sun J, Sun X, Shen Q, Gao Z, Yang C. Caenorhabditis elegans protein arginine methyltransferase PRMT-5 negatively regulates DNA damage-induced apoptosis. PLoS Genet. 2009;5(6):e1000514. Epub 2009/06/13. doi: 10.1371/journal.pgen.1000514 19521535; PubMed Central PMCID: PMC2691592.
83. Absalan F, Saremy S, Mansori E, Taheri Moghadam M, Eftekhari Moghadam AR, Ghanavati R. Effects of Mono-(2-Ethylhexyl) Phthalate and Di-(2-Ethylhexyl) Phthalate Administrations on Oocyte Meiotic Maturation, Apoptosis and Gene Quantification in Mouse Model. Cell J. 2017;18(4):503–13. Epub 2017/01/04. doi: 10.22074/cellj.2016.4717 28042535; PubMed Central PMCID: PMC5086329.
84. Grossman D, Kalo D, Gendelman M, Roth Z. Effect of di-(2-ethylhexyl) phthalate and mono-(2-ethylhexyl) phthalate on in vitro developmental competence of bovine oocytes. Cell Biol Toxicol. 2012;28(6):383–96. Epub 2012/09/08. doi: 10.1007/s10565-012-9230-1 22956148.
85. Haimovitz-Friedman A, Kolesnick RN, Fuks Z. Ceramide signaling in apoptosis. Br Med Bull. 1997;53(3):539–53. Epub 1997/01/01. doi: 10.1093/oxfordjournals.bmb.a011629 9374036.
86. Hamard PJ, Santiago GE, Liu F, Karl DL, Martinez C, Man N, et al. PRMT5 Regulates DNA Repair by Controlling the Alternative Splicing of Histone-Modifying Enzymes. Cell Rep. 2018;24(10):2643–57. Epub 2018/09/06. doi: 10.1016/j.celrep.2018.08.002 30184499; PubMed Central PMCID: PMC6322662.
87. Zhang XF, Zhang T, Han Z, Liu JC, Liu YP, Ma JY, et al. Transgenerational inheritance of ovarian development deficiency induced by maternal diethylhexyl phthalate exposure. Reprod Fertil Dev. 2015;27(8):1213–21. Epub 2014/06/13. doi: 10.1071/RD14113 24919469.
88. Carnevali O, Tosti L, Speciale C, Peng C, Zhu Y, Maradonna F. DEHP impairs zebrafish reproduction by affecting critical factors in oogenesis. PLoS One. 2010;5(4):e10201. Epub 2010/04/27. doi: 10.1371/journal.pone.0010201 20419165; PubMed Central PMCID: PMC2855362.
89. Sulston JE, Brenner S. The DNA of Caenorhabditis elegans. Genetics. 1974;77(1):95–104. Epub 1974/05/01. 4858229; PubMed Central PMCID: PMC1213121.
90. Porta-de-la-Riva M, Fontrodona L, Villanueva A, Ceron J. Basic Caenorhabditis elegans methods: synchronization and observation. J Vis Exp. 2012;(64):e4019. Epub 2012/06/20. doi: 10.3791/4019 22710399; PubMed Central PMCID: PMC3607348.
91. Craig AL, Moser SC, Bailly AP, Gartner A. Methods for studying the DNA damage response in the Caenorhabdatis elegans germ line. Methods Cell Biol. 2012;107:321–52. Epub 2012/01/10. doi: 10.1016/B978-0-12-394620-1.00011-4 22226529.
92. Colaiacovo MP, MacQueen AJ, Martinez-Perez E, McDonald K, Adamo A, La Volpe A, et al. Synaptonemal complex assembly in C. elegans is dispensable for loading strand-exchange proteins but critical for proper completion of recombination. Dev Cell. 2003;5(3):463–74. Epub 2003/09/12. doi: 10.1016/s1534-5807(03)00232-6 12967565.
93. Nishi Y, Rogers E, Robertson SM, Lin R. Polo kinases regulate C. elegans embryonic polarity via binding to DYRK2-primed MEX-5 and MEX-6. Development. 2008;135(4):687–97. Epub 2008/01/18. doi: 10.1242/dev.013425 18199581.
94. Clemons AM, Brockway HM, Yin Y, Kasinathan B, Butterfield YS, Jones SJ, et al. akirin is required for diakinesis bivalent structure and synaptonemal complex disassembly at meiotic prophase I. Mol Biol Cell. 2013;24(7):1053–67. Epub 2013/02/01. doi: 10.1091/mbc.E12-11-0841 23363597; PubMed Central PMCID: PMC3608493.
95. Chen H, Hughes DD, Chan TA, Sedat JW, Agard DA. IVE (Image Visualization Environment): a software platform for all three-dimensional microscopy applications. J Struct Biol. 1996;116(1):56–60. Epub 1996/01/01. doi: 10.1006/jsbi.1996.0010 8742723.
96. Boyd WA, McBride SJ, Rice JR, Snyder DW, Freedman JH. A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay. Toxicol Appl Pharmacol. 2010;245(2):153–9. Epub 2010/03/09. doi: 10.1016/j.taap.2010.02.014 20206647; PubMed Central PMCID: PMC2871981.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2020 Číslo 1
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Dynamic and regulated TAF gene expression during mouse embryonic germ cell development
- Ligand dependent gene regulation by transient ERα clustered enhancers
- ELF5 modulates the estrogen receptor cistrome in breast cancer
- Autophagy gene haploinsufficiency drives chromosome instability, increases migration, and promotes early ovarian tumors