Motor Vehicle Crashes in Diabetic Patients with Tight Glycemic Control: A Population-based Case Control Analysis
Background:
Complications from diabetes mellitus can compromise a driver's ability to safely operate a motor vehicle, yet little is known about whether euglycemia predicts normal driving risks among adults with diabetes. We studied the association between glycosylated hemoglobin (HbA1c) and the risk of a motor vehicle crash using a population-based case control analysis.
Methods and Findings:
We identified consecutive drivers reported to vehicle licensing authorities between January 1, 2005 to January 1, 2007 who had a diagnosis of diabetes mellitus and a HbA1c documented. The risk of a crash was calculated taking into account potential confounders including blood glucose monitoring, complications, and treatments. A total of 57 patients were involved in a crash and 738 were not involved in a crash. The mean HbA1c was lower for those in a crash than controls (7.4% versus 7.9%, unpaired t-test, p = 0.019), equal to a 26% increase in the relative risk of a crash for each 1% reduction in HbA1c (odds ratio = 1.26, 95% confidence interval 1.03–1.54). The trend was evident across the range of HbA1c values and persisted after adjustment for measured confounders (odds ratio = 1.25, 95% confidence interval 1.02–1.55). The two other significant risk factors for a crash were a history of severe hypoglycemia requiring outside assistance (odds ratio = 4.07, 95% confidence interval 2.35–7.04) and later age at diabetes diagnosis (odds ratio per decade = 1.29, 95% confidence interval 1.07–1.57).
Conclusions:
In this selected population, tighter glycemic control, as measured by the HbA1c, is associated with an increased risk of a motor vehicle crash.
: Please see later in the article for the Editors' Summary
Vyšlo v časopise:
Motor Vehicle Crashes in Diabetic Patients with Tight Glycemic Control: A Population-based Case Control Analysis. PLoS Med 6(12): e32767. doi:10.1371/journal.pmed.1000192
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pmed.1000192
Souhrn
Background:
Complications from diabetes mellitus can compromise a driver's ability to safely operate a motor vehicle, yet little is known about whether euglycemia predicts normal driving risks among adults with diabetes. We studied the association between glycosylated hemoglobin (HbA1c) and the risk of a motor vehicle crash using a population-based case control analysis.
Methods and Findings:
We identified consecutive drivers reported to vehicle licensing authorities between January 1, 2005 to January 1, 2007 who had a diagnosis of diabetes mellitus and a HbA1c documented. The risk of a crash was calculated taking into account potential confounders including blood glucose monitoring, complications, and treatments. A total of 57 patients were involved in a crash and 738 were not involved in a crash. The mean HbA1c was lower for those in a crash than controls (7.4% versus 7.9%, unpaired t-test, p = 0.019), equal to a 26% increase in the relative risk of a crash for each 1% reduction in HbA1c (odds ratio = 1.26, 95% confidence interval 1.03–1.54). The trend was evident across the range of HbA1c values and persisted after adjustment for measured confounders (odds ratio = 1.25, 95% confidence interval 1.02–1.55). The two other significant risk factors for a crash were a history of severe hypoglycemia requiring outside assistance (odds ratio = 4.07, 95% confidence interval 2.35–7.04) and later age at diabetes diagnosis (odds ratio per decade = 1.29, 95% confidence interval 1.07–1.57).
Conclusions:
In this selected population, tighter glycemic control, as measured by the HbA1c, is associated with an increased risk of a motor vehicle crash.
: Please see later in the article for the Editors' Summary
Zdroje
1. Fatality analysis reporting system encyclopedia Washington (D.C.) National Highway Traffic Safety Administration Available: http://www-fars.nhtsa.dot.gov/Main/index.aspx. Accessed 15 October 2009
2. Centers for Disease Control and Prevention 2005 National diabetes fact sheet: general information and national estimates on diabetes in the United States, 2005. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. Available: http://www.diabetes.org/uedocuments/NationalDiabetesFactSheetRev.pdf. Accessed 15 October 2009
3. Wikipedia, the Free Encyclopedia. Astronomical unit. Available: http://en.wikipedia.org/wiki/Astronomical_unit. Accessed 15 October 2009
4. EvansL
2004 Traffic safety Bloomfield Hills (Michigan) Science Serving Society 444
5. StegL
VlekC
SlotegraafG
2001 Instrumental-reasoned and symbolic-affective motives for using a motor car. Transportation Research Part F: Psychology and Behaviour 4 151 169
6. RedelmeierDA
WeinsteinMC
1999 Cost-effectiveness of regulations against using a cellular telephone while driving. Med Decis Making 19 1 8
7. WinstonFK
Kassam-AdamsN
Vivarelli-O'NeillC
FordJ
NewmanE
2002 Acute stress disorder symptoms in children and their parents after pediatric traffic injury. Pediatrics 109 e90
8. MarshallSC
2008 The role of reduced fitness to drive due to medical impairments in explaining crashes involving older drivers. Traffic Inj Prev 9 291 298
9. LangfordJ
BraitmanK
CharltonJ
EberhardJ
O'NeillD
2008 Licensing authorities' options for managing older driver safety—practical advice from the researchers. Traffic Inj Prev 9 278 281
10. DistillerLA
KramerBD
1996 Driving and diabetics on insulin therapy. S Afr Med J 86 1018 1020
11. FlanaganDE
WatsonJ
EverettJ
CavanD
KerrD
2000 Driving and insulin–consensus, conflict or confusion? Diabet Med 17 316 320
12. CundyT
DruryP
2000 Vocational driving, diabetes and insulin use. N Z Med J 113 317 318
13. PolakBC
van RijnLJ
KorverC
2003 Fitness to drive in people with diabetes mellitus; a recommendation from the Health Council of the Netherlands. Ned Tijdschr Geneeskd 147 1243
14. MarcinkiewiczA
SzoslandD
2007 Medical certification for diabetic drivers in the selected European Union member states. Med Pr 58 541 546
15. JornayvazFR
RagusoCA
PhilippeJ
2007 Diabetes mellitus and driving. Rev Med Suisse 3 1437 1438, 1440–1441
16. GillG
DurstonJ
JohnstonR
MacLeodK
WatkinsP
2002 Insulin-treated diabetes and driving in the UK. Diabet Med 19 435 439
17. American Diabetes Association 2004 Standards of medical care in diabetes. Diabetes Care 27 S15 S35
18. Canadian Medical Association 2006 Section 17: Endocrine and metabolic disorders. 74 81 Determining medical fitness to operate motor vehicles. CMA driver's guide, 7th edition Available: http://www.cma.ca/multimedia/CMA/Content_Images/Inside_cma/WhatWePublish/Drivers_Guide/Section17_e.pdf. Accessed 15 October 2009
19. RedelmeierDA
VenkateshV
StanbrookMB
2008 Mandatory reporting by physicians of patients potentially unfit to drive. Open Medicine 2 8 17
20. Ontario Ministry of Transportation Driver Improvement Office 2009 Medical review section. Available: http://www.mto.gov.on.ca/english/dandv/driver/medical-review/. Accessed 15 October 2009
21. CarpinelliA
MoscaA
BoniniP
1986 Evaluation of a new semi-automated high-performance liquid chromatography method for glycosylated haemoglobins. J Automat Chem 8 192 196
22. ManleyS
JohnWG
MarshallS
2004 Introduction of IFCC reference method for calibration of HbA1c: implications for clinical care. Diabetic Med 21 673 676
23. PeduzziP
ConcatoJ
KemperE
HolfordTR
FeinsteinAR
1996 A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 49 1373 1379
24. HulleySB
CummingsSR
1988 Designing clinical research Baltimore Williams and Wilkins 250
25. NeuhauserM
HothornLA
1999 An exact Cochran-Armitage test for trend when dose-response shapes are a priori unknown. Comput Stat Data Anal 30 403 412
26. SackettDL
1979 Bias in analytic research. J Chron Dis 32 52 63
27. FildesBN
2008 Future directions for older driver research. Traffic Inj Prev 9 387 393
28. DanaeiG
DingEL
MozaffarianD
TaylorB
RehmJ
2009 The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med 6 e1000058 doi:10.1371/journal.pmed.1000058
29. WilliamsAF
2009 Licensing age and teenage driver crashes: a review of the evidence. Traffic Inj Prev 10 9 15
30. EberhardJ
2008 Older drivers' “high per mile crash involvement”: the implications for licensing authorities. Traffic Inj Prev 9 284 290
31. Action to Control Cardiovascular Risk in Diabetes Study Group 2008 Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358 2545 2559
32. ADVANCE Collaborative Group 2008 Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358 2560 2572
33. DuckworthW
AbrairaC
MoritzT
RedaD
EmanueleN
2009 Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 360 129 139
34. WeingerK
KinsleyBT
LevyCJ
BajajM
SimonsonDC
1999 The perception of safe driving ability during hypoglycemia in patients with type 1 diabetes mellitus. Am J Med 107 246 253
35. ClarkeWL
CoxDJ
Gonder-FrederickLA
KovatchevB
1999 Hypoglycemia and the decision to drive a motor vehicle by persons with diabetes. JAMA 282 750 754
36. CoxDJ
Gonder-FrederickLA
KovatchevBP
JulianDM
ClarkeWL
2000 Progressive hypoglycemia's impact on driving simulation performance. Occurrence, awareness and correction. Diabetes Care 23 163 170
37. StorkAD
van HaeftenTW
VenemanTF
2007 The decision not to drive during hypoglycemia in patients with type 1 and type 2 diabetes according to hypoglycemia awareness. Diabetes Care 30 2822 2826
38. KennedyRL
HenryJ
ChapmanAJ
NayarR
GrantP
2002 Accidents in patients with insulin-treated diabetes: increased risk of low-impact falls but not motor vehicle crashes–a prospective register-based study. J Trauma 52 660 666
39. BeggIS
YaleJF
HouldenRL
RoweRC
McSherryJ
2003 Canadian Diabetes Association's clinical practice guidelines for diabetes and private and commercial driving. Can J Diabetes 27 128 148
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2009 Číslo 12
- Statinová intolerance
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Co dělat při intoleranci statinů?
- Pleiotropní účinky statinů na kardiovaskulární systém
- DESATORO PRE PRAX: Aktuálne odporúčanie ESPEN pre nutričný manažment u pacientov s COVID-19
Najčítanejšie v tomto čísle
- Motor Vehicle Crashes in Diabetic Patients with Tight Glycemic Control: A Population-based Case Control Analysis
- Sexual Inequality in Tuberculosis
- A New Year's Wish List for Authors, Reviewers, Readers—and Ourselves