Complexity in Mathematical Models of Public Health Policies: A Guide for Consumers of Models
article has not abstract
Vyšlo v časopise:
Complexity in Mathematical Models of Public Health Policies: A Guide for Consumers of Models. PLoS Med 10(10): e32767. doi:10.1371/journal.pmed.1001540
Kategorie:
Guidelines and Guidance
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pmed.1001540
Souhrn
article has not abstract
Zdroje
1. Anderson R, May R (1992) Infectious diseases of humans: dynamics and control. Oxford: Oxford University Press.
2. Keeling MJ, Rohani P (2007) Modeling infectious diseases in humans and animals. Princeton: Princeton University Press.
3. EatonJW, JohnsonLF, SalomonJA, BärnighausenT, BendavidE, et al. (2012) HIV treatment as prevention: systematic comparison of mathematical models of the potential impact of antiretroviral therapy on HIV incidence in South Africa. PloS Med 9 ((7)) e1001245 doi:10.1371/journal.pmed.1001245
4. AndrewsJR, BasuS (2011) Transmission dynamics and control of cholera in Haiti: an epidemic model. Lancet 377: 1248–1255.
5. BertuzzoE, MariL, RighettoL, GattoM, CasagrandiR, et al. (2011) Prediction of the spatial evolution and effects of control measures for the unfolding Haiti cholera outbreak. Geophys Res Lett 38: L06403.
6. RinaldoA, BlokeschM, BertuzzoE, MariL, RighettoL, et al. (2011) A transmission model of the 2010 cholera epidemic in Haiti. Ann Intern Med 155: 403–4; author reply 404.
7. TuiteAR, TienJ, EisenbergM, EarnDJ, MaJ, et al. (2011) Cholera epidemic in Haiti, 2010: using a transmission model to explain spatial spread of disease and identify optimal control interventions. Ann Intern Med 154: 593–601.
8. MayRM (2004) Uses and abuses of mathematics in biology. Science 303: 790–793.
9. BasuS, GalvaniAP (2007) Re: “Multiparameter calibration of a natural history model of cervical cancer.”. Am J Epidemiol 166: 983; author reply 983–4.
10. BasuS, StucklerD, BittonA, GlantzSA (2011) Projected effects of tobacco smoking on worldwide tuberculosis control: mathematical modelling analysis. BMJ 343: d5506.
11. Bolker BM (2008) Ecological models and data in R. Princeton: Princeton University Press.
12. BlowerSM, DowlatabadiH (1994) Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int Stat Rev Int Stat 229–243.
13. SutharAB, LawnSD, del AmoJ, GetahunH, DyeC, et al. (2012) Antiretroviral therapy for prevention of tuberculosis in adults with HIV: a systematic review and meta-analysis. PloS Med 9 ((7)) e1001270 doi:10.1371/journal.pmed.1001270
14. AndrewsJR, WoodR, BekkerL-G, MiddelkoopK, WalenskyRP (2012) Projecting the benefits of antiretroviral therapy for HIV prevention: the impact of population mobility and linkage to care. J Infect Dis 206: 543–551.
15. O'NeillPD, RobertsGO (1999) Bayesian inference for partially observed stochastic epidemics. J R Stat Soc Ser 162: 121–129.
16. ToniT, WelchD, StrelkowaN, IpsenA, StumpfMP (2009) Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J R Soc Interface 6: 187–202.
17. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. New York: Springer-Verlag.
18. BortzDM, NelsonPW (2006) Model selection and mixed-effects modeling of HIV infection dynamics. Bull Math Biol 68: 2005–2025.
19. EylesH, MhurchuCN, NghiemN, BlakelyT (2012) Food pricing strategies, population diets, and non-communicable disease: a systematic review of simulation studies. PloS Med 9 ((12)) e1001353 doi:10.1371/journal.pmed.1001353
20. RahmandadH, StermanJD (2012) Reporting guidelines for simulation-based research in social sciences. Syst Dyn Rev 28: 396–411.
21. GrimmV, BergerU, DeAngelisDL, PolhillJG, GiskeJ, et al. (2010) The ODD protocol: a review and first update. Ecol Model 221: 2760–2768.
22. GreenPJ (1995) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82: 711–732.
23. PinkertonSD (2008) Probability of HIV transmission during acute infection in Rakai, Uganda. Aids Behav 12: 677–684.
24. PilcherCD, ChristopoulosKA, GoldenM (2010) Public health rationale for rapid nucleic acid or p24 antigen tests for HIV. J Infect Dis 201: S7–S15.
25. PowersKA, GhaniAC, MillerWC, HoffmanIF, PettiforAE, et al. (2011) The role of acute and early HIV infection in the spread of HIV and implications for transmission prevention strategies in Lilongwe, Malawi: a modelling study. Lancet 378: 256–268.
26. StewardWT, RemienRH, HigginsJA, DubrowR, PinkertonSD, et al. (2009) Behavior change following diagnosis with acute/early HIV infection—a move to serosorting with other HIV-infected individuals. The NIMH Multisite Acute HIV Infection Study: III. Aids Behav 13: 1054–1060.
27. HoltgraveDR (2010) Potential and limitations of a “test and treat”strategy as HIV prevention in the United States. Int J Clin Pract 64: 678–681.
28. WalenskyRP, PaltielAD, LosinaE, MorrisBL, ScottCA, et al. (2010) Test and treat DC: forecasting the impact of a comprehensive HIV strategy in Washington DC. Clin Infect Dis 51: 392–400.
29. BasuS, ChapmanGB, GalvaniAP (2008) Integrating epidemiology, psychology, and economics to achieve HPV vaccination targets. Proc Natl Acad Sci U S A 105: 19018–19023.
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2013 Číslo 10
- Statiny indukovaná myopatie: Jak na diferenciální diagnostiku?
- MUDr. Dana Vondráčková: Hepatopatie sú pri liečbe metamizolom väčším strašiakom ako agranulocytóza
- Vztah mezi statiny a rizikem vzniku nádorových onemocnění − metaanalýza
- Nech brouka žít… Ať žije astma!
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
Najčítanejšie v tomto čísle
- Utility of the Xpert MTB/RIF Assay for Diagnosis of Tuberculous Meningitis
- Modelling the Strategic Use of Antiretroviral Therapy for the Treatment and Prevention of HIV
- Diagnostic Accuracy of Quantitative PCR (Xpert MTB/RIF) for Tuberculous Meningitis in a High Burden Setting: A Prospective Study
- Assessing Optimal Target Populations for Influenza Vaccination Programmes: An Evidence Synthesis and Modelling Study