When to Start Antiretroviral Therapy in Children Aged 2–5 Years: A Collaborative Causal Modelling Analysis of Cohort Studies from Southern Africa
Background:
There is limited evidence on the optimal timing of antiretroviral therapy (ART) initiation in children 2–5 y of age. We conducted a causal modelling analysis using the International Epidemiologic Databases to Evaluate AIDS–Southern Africa (IeDEA-SA) collaborative dataset to determine the difference in mortality when starting ART in children aged 2–5 y immediately (irrespective of CD4 criteria), as recommended in the World Health Organization (WHO) 2013 guidelines, compared to deferring to lower CD4 thresholds, for example, the WHO 2010 recommended threshold of CD4 count <750 cells/mm3 or CD4 percentage (CD4%) <25%.
Methods and Findings:
ART-naïve children enrolling in HIV care at IeDEA-SA sites who were between 24 and 59 mo of age at first visit and with ≥1 visit prior to ART initiation and ≥1 follow-up visit were included. We estimated mortality for ART initiation at different CD4 thresholds for up to 3 y using g-computation, adjusting for measured time-dependent confounding of CD4 percent, CD4 count, and weight-for-age z-score. Confidence intervals were constructed using bootstrapping.
The median (first; third quartile) age at first visit of 2,934 children (51% male) included in the analysis was 3.3 y (2.6; 4.1), with a median (first; third quartile) CD4 count of 592 cells/mm3 (356; 895) and median (first; third quartile) CD4% of 16% (10%; 23%). The estimated cumulative mortality after 3 y for ART initiation at different CD4 thresholds ranged from 3.4% (95% CI: 2.1–6.5) (no ART) to 2.1% (95% CI: 1.3%–3.5%) (ART irrespective of CD4 value). Estimated mortality was overall higher when initiating ART at lower CD4 values or not at all. There was no mortality difference between starting ART immediately, irrespective of CD4 value, and ART initiation at the WHO 2010 recommended threshold of CD4 count <750 cells/mm3 or CD4% <25%, with mortality estimates of 2.1% (95% CI: 1.3%–3.5%) and 2.2% (95% CI: 1.4%–3.5%) after 3 y, respectively. The analysis was limited by loss to follow-up and the unavailability of WHO staging data.
Conclusions:
The results indicate no mortality difference for up to 3 y between ART initiation irrespective of CD4 value and ART initiation at a threshold of CD4 count <750 cells/mm3 or CD4% <25%, but there are overall higher point estimates for mortality when ART is initiated at lower CD4 values.
Please see later in the article for the Editors' Summary
Vyšlo v časopise:
When to Start Antiretroviral Therapy in Children Aged 2–5 Years: A Collaborative Causal Modelling Analysis of Cohort Studies from Southern Africa. PLoS Med 10(11): e32767. doi:10.1371/journal.pmed.1001555
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pmed.1001555
Souhrn
Background:
There is limited evidence on the optimal timing of antiretroviral therapy (ART) initiation in children 2–5 y of age. We conducted a causal modelling analysis using the International Epidemiologic Databases to Evaluate AIDS–Southern Africa (IeDEA-SA) collaborative dataset to determine the difference in mortality when starting ART in children aged 2–5 y immediately (irrespective of CD4 criteria), as recommended in the World Health Organization (WHO) 2013 guidelines, compared to deferring to lower CD4 thresholds, for example, the WHO 2010 recommended threshold of CD4 count <750 cells/mm3 or CD4 percentage (CD4%) <25%.
Methods and Findings:
ART-naïve children enrolling in HIV care at IeDEA-SA sites who were between 24 and 59 mo of age at first visit and with ≥1 visit prior to ART initiation and ≥1 follow-up visit were included. We estimated mortality for ART initiation at different CD4 thresholds for up to 3 y using g-computation, adjusting for measured time-dependent confounding of CD4 percent, CD4 count, and weight-for-age z-score. Confidence intervals were constructed using bootstrapping.
The median (first; third quartile) age at first visit of 2,934 children (51% male) included in the analysis was 3.3 y (2.6; 4.1), with a median (first; third quartile) CD4 count of 592 cells/mm3 (356; 895) and median (first; third quartile) CD4% of 16% (10%; 23%). The estimated cumulative mortality after 3 y for ART initiation at different CD4 thresholds ranged from 3.4% (95% CI: 2.1–6.5) (no ART) to 2.1% (95% CI: 1.3%–3.5%) (ART irrespective of CD4 value). Estimated mortality was overall higher when initiating ART at lower CD4 values or not at all. There was no mortality difference between starting ART immediately, irrespective of CD4 value, and ART initiation at the WHO 2010 recommended threshold of CD4 count <750 cells/mm3 or CD4% <25%, with mortality estimates of 2.1% (95% CI: 1.3%–3.5%) and 2.2% (95% CI: 1.4%–3.5%) after 3 y, respectively. The analysis was limited by loss to follow-up and the unavailability of WHO staging data.
Conclusions:
The results indicate no mortality difference for up to 3 y between ART initiation irrespective of CD4 value and ART initiation at a threshold of CD4 count <750 cells/mm3 or CD4% <25%, but there are overall higher point estimates for mortality when ART is initiated at lower CD4 values.
Please see later in the article for the Editors' Summary
Zdroje
1. Joint United Nations Programme on HIV/AIDS (2012) Report on the global AIDS epidemic. Geneva: Joint United Nations Programme on HIV/AIDS.
2. LeroyV, DabisF (2012) When should therapy begin for children infected with HIV? Lancet Infect Dis 12: 900–902.
3. PrendergastAJ, PenazzatoM, CottonM, MusokeP, MulengaV, et al. (2012) Treatment of young children with HIV infection: using evidence to inform policymakers. PLoS Med 9 (7) e1001273 doi:10.1371/journal.pmed.1001273
4. ViolariA, CottonMF, GibbDM, BabikerAG, SteynJ, et al. (2008) Early antiretroviral therapy and mortality among HIV-infected infants. N Engl J Med 359: 2233–2244.
5. PenazzatoM, PrendergastA, TierneyJ, CottonM, GibbD (2012) Effectiveness of antiretroviral therapy in HIV-infected children under 2 years of age. Cochrane Database Syst Rev 2012: CD004772.
6. AnanworanichJ, KosalaraksaP, SiangphoeU, EngchanilC, PancharoenC, et al. (2008) A feasibility study of immediate versus deferred antiretroviral therapy in children with HIV infection. AIDS Res Ther 5: 24.
7. PuthanakitT, AnanworanichJ, VonthanakS, KosalaraksaP, HansudewechakulR, et al. (2013) Cognitive function and neurodevelopmental outcomes in HIV-infected children older than 1 year of age randomized to early versus deferred antiretroviral therapy: the PREDICT neurodevelopmental study. Pediatr Infect Dis J 32: 501–508.
8. PuthanakitT, BunupuradahT (2010) Early versus deferred antiretroviral therapy in children in low-income and middle-income countries. Curr Opin HIV/AIDS 5: 12–17.
9. PuthanakitT, SaphonnV, AnanworanichJ, KosalaraksaP, HansudewechakulR, et al. (2012) Early versus deferred antiretroviral therapy for children older than 1 year infected with HIV (PREDICT): a multicentre, randomised, open-label trial. Lancet Infect Dis 12: 933–941.
10. Cross Continents Collaboration for Kids (3Cs4kids) Analysis and Writing Committee (2008) Markers for predicting mortality in untreated HIV-infected children in resource-limited settings: a meta-analysis. AIDS 22: 97–105.
11. DunnD (2003) HIV Paediatric Prognostic Markers Collaborative Study Group (2003) Short-term risk of disease progression in HIV-1-infected children receiving no antiretroviral therapy or zidovudine monotherapy: a meta-analysis. Lancet 362: 1605–1611.
12. DunnD, WoodburnP, DuongT, PetoJ, PhillipsA, et al. (2008) Current CD4 cell count and the short-term risk of AIDS and death before the availability of effective antiretroviral therapy in HIV-infected children and adults. J Infect Dis 197: 398–404.
13. DanielRM, CousensSN, De StavolaBL, KenwardMG, SterneJA (2013) Methods for dealing with time-dependent confounding. Stat Med 32: 1584–1618.
14. RobinsJM, HernanMA, BrumbackB (2000) Marginal structural models and causal inference in epidemiology. Epidemiology 11: 550–560.
15. GsponerT, PetersenM, EggerM, PhiriS, MaathuisMH, et al. (2012) The causal effect of switching to second-line ART in programmes without access to routine viral load monitoring. AIDS 26: 57–65.
16. World Health Organization (2010) Antiretroviral therapy for HIV infection in infants and children: towards universal access. Recommendations for a public health approach: 2010 revision. Geneva: World Health Organization.
17. EggerM, EkoueviDK, WilliamsC, LyamuyaRE, MukumbiH, et al. (2012) Cohort profile: the international epidemiological databases to evaluate AIDS (IeDEA) in sub-Saharan Africa. Int J Epidemiol 41: 1256–1264.
18. FennerL, BrinkhofMWG, KeiserO, WeigelR, CornellM, et al. (2010) Early mortality and loss to follow-up in HIV-infected children starting antiretroviral therapy in southern Africa. J Acquir Immune Defic Syndr 54: 524–532.
19. World Health Organization (2006) The WHO child growth standards. Geneva: World Health Organization.
20. HonakerJ, KingG (2010) What to do about missing values in time-series cross-section data. Am J Pol Sci 54: 561–581.
21. RubinDB (1996) Multiple imputation after 18+ years. J Am Stat Assoc 91: 473–489.
22. SchmidtWP, BoissonS, GenserB, BarretoML, BaisleyK, et al. (2010) Weight-for-age z-score as a proxy marker for diarrhoea in epidemiological studies. J Epidemiol Community Health 64: 1074–1079.
23. World Health Organization (2007) WHO case definitions of HIV for surveillance and revised clinical staging and immunological classification of HIV-related disease in adults and children. Geneva: World Health Organization.
24. CurtisAJ, MarshallCS, SpelmanT, GreigJ, ElliotJH, et al. (2012) Incidence of WHO stage 3 and 4 conditions following initiation of anti-retroviral therapy in resource limited settings. PLoS ONE 7 (12) e52019 doi:10.1371/journal.pone.0052019
25. van der WalWM, PrinsM, LumbrerasB, GeskusRB (2009) A simple G-computation algorithm to quantify the causal effect of a secondary illness on the progression of a chronic disease. Stat Med 28: 2325–2337.
26. SchomakerM, GsponerT, EstillJ, FoxM, BoulleA (2013) Non-ignorable loss to follow-up: correcting mortality estimates based on additional outcome ascertainment. Stat Med E-pub ahead of print. doi:10.1002/sim.5912
27. R Development Core Team (2010) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
28. EdmondsA, YotebiengM, LusiamaJ, MatumonaY, KiteteleF, et al. (2011) The effect of highly active antiretroviral therapy on the survival of HIV-infected children in a resource-deprived setting: a cohort study. PLoS Med 8 (6) e1001044 doi:10.1371/journal.pmed.1001044
29. EdmondsA, YotebiengM, LusiamaJ, MatumonaY, KiteteleF, et al. (2012) Quantification of CD4 responses to combined antiretroviral therapy over 5 years among HIV-infected children in Kinshasa, Democratic Republic of Congo. J Acquir Immune Defic Syndr 61: 90–98.
30. SiegfriedN, DaviesMA, PenazzatoM, MuheLM, EggerM (2013) Optimal time for initiating antiretroviral therapy (ART) in HIV-infected, treatment-naive children aged 2 to 5 years old. Cochrane Database Syst Rev E-pub ahead of print. doi:10.1002/14651858.CD010309.pub2
31. MarstonM, BecquetR, ZabaB, MoultonLH, GrayG, et al. (2011) Net survival of perinatally and postnatally HIV-infected children: a pooled analysis of individual data from sub-Saharan Africa. Int J Epidemiol 40: 385–396.
32. DunnDT, GibbDM, DuongT, BabikerAG, AboulkerJP, et al. (2006) Predictive value of absolute CD4 cell count for disease progression in untreated HIV-1-infected children. AIDS 20: 1289–1294.
33. BraitsteinP, SongokJ, VreemanRC, Wools-KaloustianKK, KoskeiP, et al. (2011) “Wamepotea” (they have become lost): outcomes of HIV-positive and HIV-exposed children lost to follow-up from a large HIV treatment program in western Kenya. J Acquir Immune Defic Syndr 57: e40–e46.
34. McGuireM, MunyenyembeT, SzumilinE, HeinzelmannA, Le PaihM, et al. (2010) Vital status of pre-ART and ART patients defaulting from care in rural Malawi. Trop Med Int Health 15 (Suppl 1) 55–62.
35. LewisJ, WalkerAS, CastroH, De RossiA, GibbDM, et al. (2012) Age and CD4 count at initiation of antiretroviral therapy in HIV-infected children: effects on long-term T-cell reconstitution. J Infect Dis 205: 548–556.
36. LeroyV, MalatesteK, RabieH, LumbiganonP, AyayaS, et al. (2013) Outcomes of antiretroviral therapy in children in Asia and Africa: a comparative analysis of the IeDEA pediatric multiregional collaboration. J Acquir Immune Defic Syndr 62: 208–219.
37. Luque-FernandezMA, Van CutsemG, GoemaereE, HilderbrandK, SchomakerM, et al. (2013) Effectiveness of patient adherence groups as a model of care for stable patients on antiretroviral therapy in Khayelitsha, Cape Town, South Africa. PLoS ONE 8 (2) e56088 doi:10.1371/journal.pone.0056088
38. MugglinC, WandelerG, EstillJ, EggerM, BenderN, et al. (2013) Retention in care of HIV-infected children from HIV test to start of antiretroviral therapy: systematic review. PLoS ONE 8 (2) e56446 doi:10.1371/journal.pone.0056446
39. AnakyMF, DuvignacJ, WeminL, KouakoussuiA, KarcherS, et al. (2010) Scaling up antiretroviral therapy for HIV-infected children in Cote d'Ivoire: determinants of survival and loss to programme. Bull World Health Organ 88: 490–499.
40. BraitsteinP, KatshckeA, ShenCY, SangE, NyandikoW, et al. (2010) Retention of HIV-infected and HIV-exposed children in a comprehensive HIV clinical care programme in Western Kenya. Trop Med Int Health 15: 833–841.
41. HonakerJ, KingG, BlackwellM (2011) Amelia II: a program for missing data. J Stat Softw 45: 1–47.
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2013 Číslo 11
- Statiny indukovaná myopatie: Jak na diferenciální diagnostiku?
- MUDr. Dana Vondráčková: Hepatopatie sú pri liečbe metamizolom väčším strašiakom ako agranulocytóza
- Vztah mezi statiny a rizikem vzniku nádorových onemocnění − metaanalýza
- Nech brouka žít… Ať žije astma!
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
Najčítanejšie v tomto čísle
- A Brief Patient-Reported Outcomes Quality of Life (PROQOL) Instrument to Improve Patient Care
- Burden of Depressive Disorders by Country, Sex, Age, and Year: Findings from the Global Burden of Disease Study 2010
- From Ideals to Tools: Applying Human Rights to Maternal Health
- Role of DNA Methylation and Epigenetic Silencing of in Endometrial Cancer Development