Prognosis Research Strategy (PROGRESS) 3: Prognostic Model Research
article has not abstract
Vyšlo v časopise:
Prognosis Research Strategy (PROGRESS) 3: Prognostic Model Research. PLoS Med 10(2): e32767. doi:10.1371/journal.pmed.1001381
Kategorie:
Guidelines and Guidance
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pmed.1001381
Souhrn
article has not abstract
Zdroje
1. HemingwayH, CroftP, PerelP, HaydenJA, AbramsK, TimmisA, et al. (2013) Prognosis research strategy (PROGRESS) 1: A framework for researching clinical outcomes. BMJ 346: e5595.
2. RileyRD, HaydenJA, SteyerbergEW, MoonsKGM, AbramsK, et al. (2013) Prognosis research strategy (PROGRESS) 2: Prognostic factor research. PLoS Med 10: e1001380 doi:10.1371/journal.pmed.1001380.
3. Harrell FE Jr (2001) Regression modeling strategies with applications to linear models, logistic regression, and survival analysis. Springer.
4. MoonsKG, RoystonP, VergouweY, GrobbeeDE, AltmanDG (2009) Prognosis and prognostic research: what, why, and how? BMJ 338: b375.
5. Steyerberg EW (2009) Clinical prediction models: a practical approach to development, validation, and updating. Springer.
6. HaybittleJL, BlameyRW, ElstonCW, JohnsonJ, DoylePJ, et al. (1982) A prognostic index in primary breast cancer. Br J Cancer 45: 361–366.
7. PerelP, ArangoM, ClaytonT, EdwardsP, KomolafeE, et al. (2008) Predicting outcome after traumatic brain injury: practical prognostic models based on large cohort of international patients. BMJ 336: 425–429.
8. AltmanDG, VergouweY, RoystonP, MoonsKG (2009) Prognosis and prognostic research: validating a prognostic model. BMJ 338: b605.
9. MoonsKG, AltmanDG, VergouweY, RoystonP (2009) Prognosis and prognostic research: application and impact of prognostic models in clinical practice. BMJ 338: b606.
10. RoystonP, MoonsKG, AltmanDG, VergouweY (2009) Prognosis and prognostic research: developing a prognostic model. BMJ 338: b604.
11. PencinaMJ, D'AgostinoRBSr, D'AgostinoRBJr, VasanRS (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27: 157–172.
12. SteyerbergEW, VickersAJ, CookNR, GerdsT, GonenM, et al. (2010) Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 21: 128–138.
13. VickersAJ, CroninAM (2010) Traditional statistical methods for evaluating prediction models are uninformative as to clinical value: towards a decision analytic framework. Semin Oncol 37: 31–38.
14. CounsellC, DennisM (2001) Systematic review of prognostic models in patients with acute stroke. Cerebrovasc Dis 12: 159–170.
15. PerelP, EdwardsP, WentzR, RobertsI (2006) Systematic review of prognostic models in traumatic brain injury. BMC Med Inform Decis Mak 6: 38.
16. LeushuisE, van der SteegJW, SteuresP, BossuytPM, EijkemansMJ, et al. (2009) Prediction models in reproductive medicine: a critical appraisal. Hum Reprod Update 15: 537–552.
17. MinneL, LudikhuizeJ, de JongeE, de RooijS, Abu-HannaA (2011) Prognostic models for predicting mortality in elderly ICU patients: a systematic review. Intens Care Med 37: 1258–1268.
18. WyattJC, AltmanDG (1995) Commentary: Prognostic models: clinically useful or quickly forgotten? BMJ 311: 1539–1541.
19. KentDM, HaywardRA (2007) Limitations of applying summary results of clinical trials to individual patients: the need for risk stratification. JAMA 298: 1209–1212.
20. LintonSJ, HalldenK (1998) Can we screen for problematic back pain? A screening questionnaire for predicting outcome in acute and subacute back pain. Clin J Pain 14: 209–215.
21. Mackway-Jones K (1997) Emergency triage. BMJ Publishing.
22. HernandezAV, SteyerbergEW, HabbemaJD (2004) Covariate adjustment in randomized controlled trials with dichotomous outcomes increases statistical power and reduces sample size requirements. J Clin Epidemiol 57: 454–460.
23. RoozenbeekB, MaasAI, LingsmaHF, ButcherI, LuJ, et al. (2009) Baseline characteristics and statistical power in randomized controlled trials: selection, prognostic targeting, or covariate adjustment? Crit Care Med 37: 2683–2690.
24. JarmanB, PieterD, van der VeenAA, KoolRB, AylinP, et al. (2010) The hospital standardised mortality ratio: a powerful tool for Dutch hospitals to assess their quality of care? Qual Saf Health Care 19: 9–13.
25. LingsmaHF, RoozenbeekB, LiB, LuJ, WeirJ, et al. (2011) Large between-center differences in outcome after moderate and severe traumatic brain injury in the international mission on prognosis and clinical trial design in traumatic brain injury (IMPACT) study. Neurosurgery 68: 601–607.
26. SterneJAC, WhiteIR, CarlinJB, SprattM, RoystonP, et al. (2009) Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 338: b2393.
27. Royston P, Sauerbrei W (2008) Multivariable model-building: a pragmatic approach to regression analysis based on fractional polynomials for modelling continuous variables. John Wiley.
28. SauerbreiW, RoystonP, BinderH (2007) Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Stat Med 26: 5512–5528.
29. SauerbreiW (1999) The use of resampling methods to simplify regression models in medical statistics. Appl Stat 48: 313–329.
30. Schumacher M, Hollander N, Schwarzer G, Sauerbrei W (2006) Prognostic factor studies. In: Crowley J, Ankerst DP, editors. Handbook of statistics in clinical oncology. Chapman & Hall/CRC Press. pp. 289–333.
31. BleekerSE, MollHA, SteyerbergEW, DondersAR, Derksen-LubsenG, et al. (2003) External validation is necessary in prediction research: a clinical example. J Clin Epidemiol 56: 826–832.
32. JusticeAC, CovinskyKE, BerlinJA (1999) Assessing the generalizability of prognostic information. Ann Intern Med 130: 515–524.
33. ReillyBM, EvansAT (2006) Translating clinical research into clinical practice: impact of using prediction rules to make decisions. Ann Intern Med 144: 201–209.
34. TollDB, JanssenKJ, VergouweY, MoonsKG (2008) Validation, updating and impact of clinical prediction rules: a review. J Clin Epidemiol 61: 1085–1094.
35. VergouweY, SteyerbergEW, EijkemansMJ, HabbemaJD (2005) Substantial effective sample sizes were required for external validation studies of predictive logistic regression models. J Clin Epidemiol 58: 475–483.
36. SteyerbergEW, HarrellFEJr, BorsboomGJ, EijkemansMJ, VergouweY, et al. (2001) Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol 54: 774–781.
37. AltmanDG (2009) Prognostic models: a methodological framework and review of models for breast cancer. Cancer Invest 27: 235–243.
38. HillJC, WhitehurstDG, LewisM, BryanS, DunnKM, et al. (2011) Comparison of stratified primary care management for low back pain with current best practice (STarT Back): a randomised controlled trial. Lancet 378: 1560–1571.
39. FeldmanM, StanfordR, CatchesideA, StotterA (2002) The use of a prognostic table to aid decision making on adjuvant therapy for women with early breast cancer. Eur J Surg Oncol 28: 615–619.
40. HenrikssonM, PalmerS, ChenR, DamantJ, FitzpatrickNK, et al. (2010) Assessing the cost effectiveness of using prognostic biomarkers with decision models: case study in prioritising patients waiting for coronary artery surgery. BMJ 340: b5606.
41. MoonsKG (2010) Criteria for scientific evaluation of novel markers: a perspective. Clin Chem 56: 537–541.
42. UijlSG, LeijtenFS, ArendsJB, ParraJ, van HuffelenAC, et al. (2007) The added value of [18F]-fluoro-D-deoxyglucose positron emission tomography in screening for temporal lobe epilepsy surgery. Epilepsia 48: 2121–2129.
43. SteyerbergEW, MushkudianiN, PerelP, ButcherI, LuJ, et al. (2008) Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med 5: e165 doi:10.1371/journal.pmed.0050165.
44. De SilvaMJ, RobertsI, PerelP, EdwardsP, KenwardMG, et al. (2009) Patient outcome after traumatic brain injury in high-, middle- and low-income countries: analysis of data on 8927 patients in 46 countries. Int J Epidemiol 38: 452–458.
45. MenonDK, ZahedC (2009) Prediction of outcome in severe traumatic brain injury. Curr Opin Crit Care 15: 437–441.
46. SteyerbergEW, BorsboomGJ, van HouwelingenHC, EijkemansMJ, HabbemaJD (2004) Validation and updating of predictive logistic regression models: a study on sample size and shrinkage. Stat Med 23: 2567–2586.
47. Van HouwelingenHC, ThorogoodJ (1995) Construction, validation and updating of a prognostic model for kidney graft survival. Stat Med 14: 1999–2008.
48. JanssenKJ, MoonsKG, KalkmanCJ, GrobbeeDE, VergouweY (2008) Updating methods improved the performance of a clinical prediction model in new patients. J Clin Epidemiol 61: 76–86.
49. HlatkyMA, GreenlandP, ArnettDK, BallantyneCM, CriquiMH, et al. (2009) Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circ Cardiovasc Qual Outcomes 119: 2408–2416.
50. CookNR (2010) Assessing the incremental role of novel and emerging risk factors. Curr Cardiovasc Risk Rep 4: 112–119.
51. PencinaMJ, D'AgostinoRBSr, SteyerbergEW (2011) Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med 30: 11–21.
52. VickersAJ, CroninAM, BeggCB (2011) One statistical test is sufficient for assessing new predictive markers. BMC Med Res Methodol 11: 13.
53. MelanderO, Newton-ChehC, AlmgrenP, HedbladB, BerglundG, et al. (2009) Novel and conventional biomarkers for prediction of incident cardiovascular events in the community. JAMA 302: 49–57.
54. PepeMS, JanesH, LongtonG, LeisenringW, NewcombP (2004) Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. Am J Epidemiol 159: 882–890.
55. RectorTS, AnandIS (2010) Research needed to support clinical use of biomarkers as prognostic indicators for patients with heart failure. Cardiol Res Pract 2010: 453851.
56. MarchevskyAM, GuptaR (2010) Interobserver diagnostic variability at “moderate” agreement levels could significantly change the prognostic estimates of clinicopathologic studies: evaluation of the problem using evidence from patients with diffuse lung disease. Ann Diagn Pathol 14: 88–93.
57. FernandesCM, WuerzR, ClarkS, DjurdjevO (1999) How reliable is emergency department triage? Ann Emerg Med 34: 141–147.
58. Van VeenM, SteyerbergEW, RuigeM, van MeursAH, RoukemaJ, et al. (2008) Manchester triage system in paediatric emergency care: prospective observational study. BMJ 337: a1501.
59. RossPL, ScardinoPT, KattanMW (2001) A catalog of prostate cancer nomograms. J Urol 165: 1562–1568.
60. MaguireJL, KulikDM, LaupacisA, KuppermannN, UlerykEM, et al. (2011) Clinical prediction rules for children: a systematic review. Pediatrics 128: e666–77.
61. MallettS, RoystonP, DuttonS, WatersR, AltmanDG (2010) Reporting methods in studies developing prognostic models in cancer: a review. BMC Med 8: 20.
62. MallettS, RoystonP, WatersR, DuttonS, AltmanDG (2010) Reporting performance of prognostic models in cancer: a review. BMC Med 8: 21.
63. CollinsGS, MallettS, OmarO, YuLM (2011) Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting. BMC Med 9: 103.
64. WilsonPW, D'AgostinoRB, LevyD, BelangerAM, SilbershatzH, et al. (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97: 1837–1847.
65. GageBF, WatermanAD, ShannonW, BoechlerM, RichMW, et al. (2001) Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation. JAMA 285: 2864–2870.
66. SauerbreiW (2005) Prognostic factors. Confusion caused by bad quality design, analysis and reporting of many studies. Adv Otorhinolaryngol 62: 184–200.
67. HarrellFEJr, LeeKL, MarkDB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15: 361–387.
68. RileyRD, LambertPC, Abo-ZaidG (2010) Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ 340: c221.
69. BoulesteixAL, SauerbreiW (2011) Added predictive value of high-throughput molecular data to clinical data and its validation. Brief Bioinform 12: 215–229.
70. MushkudianiNA, HukkelhovenCW, HernandezAV, MurrayGD, ChoiSC, et al. (2008) A systematic review finds methodological improvements necessary for prognostic models in determining traumatic brain injury outcomes. J Clin Epidemiol 61: 331–343.
71. WassonJH, SoxHC, NeffRK, GoldmanL (1985) Clinical prediction rules. Applications and methodological standards. N Engl J Med 313: 793–9.
72. LaupacisA, SekarN, StiellIG (1997) Clinical prediction rules. A review and suggested modifications of methodological standards. JAMA 277: 488–494.
73. InguiBJ, RogersMA Searching for clinical prediction rules in Medline (2001). J Am Med Inform Assoc 8: 391–397.
74. GaleaMH, BlameyRW, ElstonCE, EllisIO (1992) The Nottingham Prognostic Index in primary breast cancer. Breast Cancer Res Treat 22: 207–219.
75. BalslevI, AxelssonCK, ZedelerK, RasmussenBB, CarstensenB, et al. (1994) The Nottingham Prognostic Index applied to 9,149 patients from the studies of the Danish Breast Cancer Cooperative Group (DBCG). Breast Cancer Res Treat 32: 281–290.
76. WilliamsC, BrunskillS, AltmanD, BriggsA, CampbellH, et al. (2006) Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy. Health Technol Assess 10(34): 1–217.
77. MaherCG, GrotleM (2009) Evaluation of the predictive validity of the Örebro Musculoskeletal Pain Screening Questionnaire. Clin J Pain 25: 666–670.
78. HockingsRL, McAuleyJH, MaherCG (2008) A systematic review of the predictive ability of the Örebro Musculoskeletal Pain Questionnaire. Spine (Phila Pa 1976) 33: E494–500.
79. MellohM, ElferingA, Egli PreslandC, RoederC, BarzT, et al. (2009) Identification of prognostic factors for chronicity in patients with low back pain: a review of screening instruments. Int Orthop 33: 301–313.
80. Kendall NAS, Linton SJ, Main CJ (1997) Guide to assessing psychosocial yellow flags in acute low back pain: risk factors for long-term disability and work loss. Rehabilitation & Compensation Insurance Corporation of New Zealand, National Health Committee.
81. Örebro musculoskeletal pain questionnaire (ÖMPQ). WorkCover Authority of New South Wales, 2011.
82. SchmidtCO, ChenotJF, PfingstenM, FahlandRA, LindenaG, et al. (2010) Assessing a risk tailored intervention to prevent disabling low back pain–protocol of a cluster randomized controlled trial. BMC Musculoskelet Disord 11: 5.
83. GotoM, WakaiK, KawamuraT, AndoM, EndohM, et al. (2009) A scoring system to predict renal outcome in IgA nephropathy: a nationwide 10-year prospective cohort study. Nephrol Dial Transplant 24: 3068–3074.
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2013 Číslo 2
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Co dělat při intoleranci statinů?
- DESATORO PRE PRAX: Aktuálne odporúčanie ESPEN pre nutričný manažment u pacientov s COVID-19
- Myasthenia gravis: kombinace chirurgie a farmakoterapie jako nejefektivnější modalita?
- Projekt MedPed: péče o nemocné s familiární hypercholesterolémií v České republice
Najčítanejšie v tomto čísle
- Prognosis Research Strategy (PROGRESS) 3: Prognostic Model Research
- Prognosis Research Strategy (PROGRESS) 2: Prognostic Factor Research
- Whole Genome Sequencing versus Traditional Genotyping for Investigation of a Outbreak: A Longitudinal Molecular Epidemiological Study
- Prevalence of Age-Related Macular Degeneration in Nakuru, Kenya: A Cross-Sectional Population-Based Study