Impact of Replacing Smear Microscopy with Xpert MTB/RIF for Diagnosing Tuberculosis in Brazil: A Stepped-Wedge Cluster-Randomized Trial
Background:
Abundant evidence on Xpert MTB/RIF accuracy for diagnosing tuberculosis (TB) and rifampicin resistance has been produced, yet there are few data on the population benefit of its programmatic use. We assessed whether the implementation of Xpert MTB/RIF in routine conditions would (1) increase the notification rate of laboratory-confirmed pulmonary TB to the national notification system and (2) reduce the time to TB treatment initiation (primary endpoints).
Methods and Findings:
We conducted a stepped-wedge cluster-randomized trial from 4 February to 4 October 2012 in 14 primary care laboratories in two Brazilian cities. Diagnostic specimens were included for 11,705 baseline (smear microscopy) and 12,522 intervention (Xpert MTB/RIF) patients presumed to have TB. Single-sputum-sample Xpert MTB/RIF replaced two-sputum-sample smear microscopy for routine diagnosis of pulmonary TB. In total, 1,137 (9.7%) tests in the baseline arm and 1,777 (14.2%) in the intervention arm were positive (p<0.001), resulting in an increased bacteriologically confirmed notification rate of 59% (95% CI = 31%, 88%). However, the overall notification rate did not increase (15%, 95% CI = −6%, 37%), and we observed no change in the notification rate for those without a test result (−3%, 95% CI = −37%, 30%). Median time to treatment decreased from 11.4 d (interquartile range [IQR] = 8.5–14.5) to 8.1 d (IQR = 5.4–9.3) (p = 0.04), although not among confirmed cases (median 7.5 [IQR = 4.9–10.0] versus 7.3 [IQR = 3.4–9.0], p = 0.51). Prevalence of rifampicin resistance detected by Xpert was 3.3% (95% CI = 2.4%, 4.3%) among new patients and 7.4% (95% CI = 4.3%, 11.7%) among retreatment patients, with a 98% (95% CI = 87%, 99%) positive predictive value compared to phenotypic drug susceptibility testing. Missing data in the information systems may have biased our primary endpoints. However, sensitivity analyses assessing the effects of missing data did not affect our results.
Conclusions:
Replacing smear microscopy with Xpert MTB/RIF in Brazil increased confirmation of pulmonary TB. An additional benefit was the accurate detection of rifampicin resistance. However, no increase on overall notification rates was observed, possibly because of high rates of empirical TB treatment.
Trial registration:
ClinicalTrials.gov NCT01363765
Please see later in the article for the Editors' Summary
Vyšlo v časopise:
Impact of Replacing Smear Microscopy with Xpert MTB/RIF for Diagnosing Tuberculosis in Brazil: A Stepped-Wedge Cluster-Randomized Trial. PLoS Med 11(12): e32767. doi:10.1371/journal.pmed.1001766
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pmed.1001766
Souhrn
Background:
Abundant evidence on Xpert MTB/RIF accuracy for diagnosing tuberculosis (TB) and rifampicin resistance has been produced, yet there are few data on the population benefit of its programmatic use. We assessed whether the implementation of Xpert MTB/RIF in routine conditions would (1) increase the notification rate of laboratory-confirmed pulmonary TB to the national notification system and (2) reduce the time to TB treatment initiation (primary endpoints).
Methods and Findings:
We conducted a stepped-wedge cluster-randomized trial from 4 February to 4 October 2012 in 14 primary care laboratories in two Brazilian cities. Diagnostic specimens were included for 11,705 baseline (smear microscopy) and 12,522 intervention (Xpert MTB/RIF) patients presumed to have TB. Single-sputum-sample Xpert MTB/RIF replaced two-sputum-sample smear microscopy for routine diagnosis of pulmonary TB. In total, 1,137 (9.7%) tests in the baseline arm and 1,777 (14.2%) in the intervention arm were positive (p<0.001), resulting in an increased bacteriologically confirmed notification rate of 59% (95% CI = 31%, 88%). However, the overall notification rate did not increase (15%, 95% CI = −6%, 37%), and we observed no change in the notification rate for those without a test result (−3%, 95% CI = −37%, 30%). Median time to treatment decreased from 11.4 d (interquartile range [IQR] = 8.5–14.5) to 8.1 d (IQR = 5.4–9.3) (p = 0.04), although not among confirmed cases (median 7.5 [IQR = 4.9–10.0] versus 7.3 [IQR = 3.4–9.0], p = 0.51). Prevalence of rifampicin resistance detected by Xpert was 3.3% (95% CI = 2.4%, 4.3%) among new patients and 7.4% (95% CI = 4.3%, 11.7%) among retreatment patients, with a 98% (95% CI = 87%, 99%) positive predictive value compared to phenotypic drug susceptibility testing. Missing data in the information systems may have biased our primary endpoints. However, sensitivity analyses assessing the effects of missing data did not affect our results.
Conclusions:
Replacing smear microscopy with Xpert MTB/RIF in Brazil increased confirmation of pulmonary TB. An additional benefit was the accurate detection of rifampicin resistance. However, no increase on overall notification rates was observed, possibly because of high rates of empirical TB treatment.
Trial registration:
ClinicalTrials.gov NCT01363765
Please see later in the article for the Editors' Summary
Zdroje
1. RaviglioneM, MaraisB, FloydK, LönnrothK, GetahunH, et al. (2012) Scaling up interventions to achieve global tuberculosis control: progress and new developments. Lancet 379: 1902–1913 doi:10.1016/S0140-6736(12)60727-2
2. BoehmeCC, NabetaP, HillemannD, NicolMP, ShenaiS, et al. (2010) Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 363: 1005–1015 doi:10.1056/NEJMoa0907847
3. BoehmeCC, NicolMP, NabetaP, MichaelJS, GotuzzoE, et al. (2011) Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study. Lancet 377: 1495–1505 doi:10.1016/S0140-6736(11)60438-8
4. TheronG, ZijenahL, ChandaD, ClowesP, RachowA, et al. (2014) Feasibility, accuracy, and clinical effect of point-of-care Xpert MTB/RIF testing for tuberculosis in primary-care settings in Africa: a multicentre, randomised, controlled trial. Lancet 383: 424–435 doi:10.1016/S0140-6736(13)62073-5
5. SteingartKR, SchillerI, HorneDJ, PaiM, BoehmeCC, et al. (2014) Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev 1: CD009593 doi:10.1002/14651858.CD009593.pub3
6. ChoiHW, MieleK, DowdyD, ShahM (2013) Cost-effectiveness of Xpert® MTB/RIF for diagnosing pulmonary tuberculosis in the United States. Int J Tuberc Lung Dis 17: 1328–1335 doi:10.5588/ijtld.13.0095
7. MenziesNA, CohenT, LinH-H, MurrayM, SalomonJA (2012) Population health impact and cost-effectiveness of tuberculosis diagnosis with Xpert MTB/RIF: a dynamic simulation and economic evaluation. PLoS Med 9: e1001347 doi:10.1371/journal.pmed.1001347
8. VassallA, van KampenS, SohnH, MichaelJS, JohnKR, et al. (2011) Rapid diagnosis of tuberculosis with the Xpert MTB/RIF assay in high burden countries: a cost-effectiveness analysis. PLoS Med 8: e1001120 doi:10.1371/journal.pmed.1001120
9. World Health Organization (2012) Tuberculosis diagnostics Xpert MTB/RIF test. WHO endorsement and recommendations. Available: http://www.who.int/tb/features_archive/factsheet_xpert_may2011update.pdf. Accessed 9 November 2013.
10. World Health Organization (2011) Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF assay for the diagnosis of pulmonary and extrapulmonary TB in adults and children. Available: http://www.stoptb.org/wg/gli/assets/documents/WHO%20Policy%20Statement%20on%20Xpert%20MTB-RIF%202013%20pre%20publication%2022102013.pdf. Accessed 13 November 2014.
11. SmallPM, PaiM (2010) Tuberculosis diagnosis—time for a game change. N Engl J Med 363: 1070–1071.
12. SchunemannHJ, OxmanAD, BrozekJ, GlasziouP, JaeschkeR, et al. (2008) Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ 336: 1106–1110 doi:10.1136/bmj.39500.677199.AE
13. CobelensF, van den HofS, PaiM, SquireSB, RamsayA, et al. (2012) Which new diagnostics for tuberculosis, and when? J Infect Dis 205 (Suppl 2): S191–S198 doi:10.1093/infdis/jis188
14. HanrahanCF, SelibasK, DeeryCB, DanseyH, ClouseK, et al. (2013) Time to treatment and patient outcomes among TB suspects screened by a single point-of-care Xpert MTB/RIF at a primary care clinic in Johannesburg, South Africa. PLoS ONE 8: e65421 doi:10.1371/journal.pone.0065421
15. YoonC, CattamanchiA, DavisJL, WorodriaW, den BoonS, et al. (2012) Impact of Xpert MTB/RIF testing on tuberculosis management and outcomes in hospitalized patients in Uganda. PLoS ONE 7: e48599 doi:10.1371/journal.pone.0048599
16. World Health Organization (2014) TB diagnostics and laboratory strengthening: WHO monitoring of Xpert MTB/RIF roll-out. Available: http://who.int/tb/laboratory/mtbrifrollout/en/. Accessed 31 October 2014.
17. ZwarensteinM, TreweekS, GagnierJJ, AltmanDG, TunisS, et al. (2008) Improving the reporting of pragmatic trials: an extension of the CONSORT statement. BMJ 337: a2390.
18. World Health Organization (2014) Global tuberculosis report 2014. Available: http://apps.who.int/iris/bitstream/10665/137094/1/9789241564809_eng.pdf?ua=1. Accessed 13 November 2014.
19. Brasil Ministério da Saúde Secretaria de Vigilância Sanitária Programa Nacional de Controle da Tuberculose (2011) Manual de recomendações para o controle da tuberculose no Brasil. Available: http://www.cve.saude.sp.gov.br/htm/TB/mat_tec/manuais/MS11_Manual_Recom.pdf. Accessed 13 November 2014.
20. Brasil Ministério da Saúde Secretaria de Vigilância em Saúde Programa Nacional de Controle da Tuberculose (2013) Programa Nacional de Controle da Tuberculose. Available: https://docs.google.com/file/d/0B0CE2wqdEaR-VG1fa0JJMi1qa0U/edit. Accessed 31 March 2014.
21. Portal da Saúde (2013). Sistema de Informação de Agravos de Notificação—SINAN. O que é o SINAN. Available: http://dtr2004.saude.gov.br/sinanweb/. Accessed 4 July 2013.
22. Portal da Saúde (2013) DATASUS: Informações de Saúde—demográficas e socioeconômicas [database]. Available: http://www2.datasus.gov.br/DATASUS/index.php?area=0206&VObj=http://tabnet.datasus.gov.br/cgi/deftohtm.exe?ibge/cnv/pop. Accessed 8 July 2013.
23. Cepheid (n.d.) The new GeneXpert® system. Available: http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CB8QFjAA&url=http%3A%2F%2Fwww.cepheid.com%2Fus%2Fcomponent%2Fphocadownload%2Fcategory%2F1-about-us%3Fdownload%3D41%3Agx-brochure&ei=1S9lVLGKFYyagwSdkIQY&usg=AFQjCNHOvPFFlDOkUPcxH9BU2dXGI6ypxQ&sig2=BVKcXMgB2MT1g0G0m40zaQ&bvm=bv.79189006,d.eXY. Accessed 13 November 2014.
24. Cepheid (2009) Xpert®MTB/RIF: two-hour detection of MTB and resistance to rifampicin. Available: http://tbevidence.org/documents/rescentre/sop/XpertMTB_Broch_R9_EU.pdf. Accessed 31 March 2014.
25. BrownCA, LilfordRJ (2006) The stepped wedge trial design: a systematic review. BMC Med Res Methodol 6: 54 doi:10.1186/1471-2288-6-54
26. Hayes RJ, Moulton LH (2009) Cluster randomized trials. Boca Raton (Florida): Chapman & Hall/CRC.
27. MoultonLH, GolubJE, DurovniB, CavalcanteSC, PachecoAG, et al. (2007) Statistical design of THRio: a phased implementation clinic-randomized study of a tuberculosis preventive therapy intervention. Clin Trials 4: 190–199 doi:10.1177/1740774507076937
28. CamargoKRJr, CoeliCM (2000) [Reclink: an application for database linkage implementing the probabilistic record linkage method.]. Cad Saude Publica 16: 439–447.
29. Sistema de Informação de Tratamentos Especiais de Tuberculose (2014) SITETB. Available: http://www.sitetb.org. Accessed 13 November 2014.
30. Instituto Brasileiro de Geografia e Estatística (2013) Estimativas da população: metodologia adotada nas estimativas populacionais municipais. Available: http://www.ibge.gov.br/home/estatistica/populacao/estimativa2005/estimativa_pop.shtm. Accessed 5 December 2013.
31. HusseyMA, HughesJP (2007) Design and analysis of stepped wedge cluster randomized trials. Contemp Clin Trials 28: 182–191 doi:10.1016/j.cct.2006.05.007
32. Fielding KL, McCarthy K, Cox H, Erasmus L, Ginindza S, et al. (2014) Xpert as the first-line TB test in South Africa: yield, initial loss to follow-up, proportion treated [abstract]. 2014 Conference on Retroviruses and Opportunistic Infections; 3–6 March 2014; Boston, Massachusetts, US.
33. TheronG, PeterJ, DowdyD, LangleyI, SquireSB, et al. (2014) Do high rates of empirical treatment undermine the potential effect of new diagnostic tests for tuberculosis in high-burden settings? Lancet Infect Dis 14: 527–532.
34. World Health Organization (2007) Improving the diagnosis and treatment of smear-negative pulmonary and extra-pulmonary tuberculosis among adults and adolescents: recommendations for HIV-prevalent and resource-constrained settings. Available: http://www.who.int/hiv/pub/tb/pulmonary/en/. Accessed 5 March 2014.
35. WalusimbiS, BwangaF, De CostaA, HaileM, JolobaM, et al. (2013) Meta-analysis to compare the accuracy of GeneXpert, MODS and the WHO 2007 algorithm for diagnosis of smear-negative pulmonary tuberculosis. BMC Infect Dis 13: 507.
36. SeligL, GuedesR, KritskiA, SpectorN, LapaE, SilvaJR, et al. (2009) Uses of tuberculosis mortality surveillance to identify programme errors and improve database reporting. Int J Tuberc Lung Dis 13: 982–988.
37. OliveiraLM, PinheiroIIRS (2011) Óbitos e internações por tuberculose não notificados no Município do Rio de Janeiro. Rev Saude Publica 45: 31–39.
38. HarriesAD, RusenID, ChiangC-Y, HinderakerSG, EnarsonDA (2009) Registering initial defaulters and reporting on their treatment outcomes. Int J Tuberc Lung Dis 13: 801–803.
39. RhodaDA, MurrayDM, AndridgeRR, PennellML, HadeEM (2011) Studies with staggered starts: multiple baseline designs and group-randomized trials. Am J Public Health 101: 2164–2169 doi:10.2105/AJPH.2011.300264
40. TheronG, PeterJ, van Zyl-SmitR, MishraH, StreicherE, et al. (2011) Evaluation of the Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in a high HIV prevalence setting. Am J Respir Crit Care Med 184: 132–140 doi:10.1164/rccm.201101-0056OC
41. Foundation for Innovative New Diagnostics (2011) Performance of Xpert MTB/RIF version G4 assay. Geneva: Foundation for Innovative New Diagnostics. Available: http://www.stoptb.org/wg/gli/assets/documents/map/findg4cartridge.pdf. Accessed 2 February 2014.
42. OsmanM, SimpsonJA, CaldwellJ, BosmanM, NicolMP (2014) GeneXpert MTB/RIF version G4 for identification of rifampin-resistant tuberculosis in a programmatic setting. J Clin Microbiol 52: 635–637 doi:10.1128/JCM.02517-13
43. Van DeunA, AungKJM, BolaV, LebekeR, HossainMA, et al. (2013) Rifampin drug resistance tests for tuberculosis: challenging the gold standard. J Clin Microbiol 51: 2633–2640 doi:10.1128/JCM.00553-13
44. RufaiSB, KumarP, SinghA, PrajapatiS, BalooniV, et al. (2014) Comparison of Xpert MTB/RIF with line probe assay for detection of rifampin-monoresistant Mycobacterium tuberculosis. J Clin Microbiol 52: 1846–1852 doi:10.1128/JCM.03005-13
45. KwakN, ChoiSM, LeeJ, ParkYS, LeeC-H, et al. (2013) Diagnostic accuracy and turnaround time of the Xpert MTB/RIF assay in routine clinical practice. PLoS ONE 8: e77456 doi:10.1371/journal.pone.0077456
46. DurovniB, SaraceniV, Cordeirodo-SantosM, CavalcanteSC, SoaresE, et al. (2014) Operational lessons drawn from pilot implementation of Xpert MTB/Rif in Brazil. Bull World Health Organ 92: 613–617.
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2014 Číslo 12
- Statinová intolerance
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Metamizol v liečbe pooperačnej bolesti u detí do 6 rokov veku
- Co dělat při intoleranci statinů?
Najčítanejšie v tomto čísle
- Artemisinin-Naphthoquine versus Artemether-Lumefantrine for Uncomplicated Malaria in Papua New Guinean Children: An Open-Label Randomized Trial
- Home-Based Versus Mobile Clinic HIV Testing and Counseling in Rural Lesotho: A Cluster-Randomized Trial
- A Stronger Post-Publication Culture Is Needed for Better Science
- Metabolic Signatures of Adiposity in Young Adults: Mendelian Randomization Analysis and Effects of Weight Change