Preventing Acute Malnutrition among Young Children in Crises: A Prospective Intervention Study in Niger
Background:
Finding the most appropriate strategy for the prevention of moderate acute malnutrition (MAM) and severe acute malnutrition (SAM) in young children is essential in countries like Niger with annual “hunger gaps.” Options for large-scale prevention include distribution of supplementary foods, such as fortified-blended foods or lipid-based nutrient supplements (LNSs) with or without household support (cash or food transfer). To date, there has been no direct controlled comparison between these strategies leading to debate concerning their effectiveness. We compared the effectiveness of seven preventive strategies—including distribution of nutritious supplementary foods, with or without additional household support (family food ration or cash transfer), and cash transfer only—on the incidence of SAM and MAM among children aged 6–23 months over a 5-month period, partly overlapping the hunger gap, in Maradi region, Niger. We hypothesized that distributions of supplementary foods would more effectively reduce the incidence of acute malnutrition than distributions of household support by cash transfer.
Methods and Findings:
We conducted a prospective intervention study in 48 rural villages located within 15 km of a health center supported by Forum Santé Niger (FORSANI)/Médecins Sans Frontières in Madarounfa. Seven groups of villages (five to 11 villages) were allocated to different strategies of monthly distributions targeting households including at least one child measuring 60 cm–80 cm (at any time during the study period whatever their nutritional status): three groups received high-quantity LNS (HQ-LNS) or medium-quantity LNS (MQ-LNS) or Super Cereal Plus (SC+) with cash (€38/month [US$52/month]); one group received SC+ and family food ration; two groups received HQ-LNS or SC+ only; one group received cash only (€43/month [US$59/month]). Children 60 cm–80 cm of participating households were assessed at each monthly distribution from August to December 2011. Primary endpoints were SAM (weight-for-length Z-score [WLZ]<−3 and/or mid-upper arm circumference [MUAC]<11.5 cm and/or bipedal edema) and MAM (−3≤WLZ<−2 and/or 11.5≤MUAC<12.5 cm). A total of 5,395 children were included in the analysis (615 to 1,054 per group). Incidence of MAM was twice lower in the strategies receiving a food supplement combined with cash compared with the cash-only strategy (cash versus HQ-LNS/cash adjusted hazard ratio [HR] = 2.30, 95% CI 1.60–3.29; cash versus SC+/cash HR = 2.42, 95% CI 1.39–4.21; cash versus MQ-LNS/cash HR = 2.07, 95% CI 1.52–2.83) or with the supplementary food only groups (HQ-LNS versus HQ-LNS/cash HR = 1.84, 95% CI 1.35–2.51; SC+ versus SC+/cash HR = 2.53, 95% CI 1.47–4.35). In addition, the incidence of SAM was three times lower in the SC+/cash group compared with the SC+ only group (SC+ only versus SC+/cash HR = 3.13, 95% CI 1.65–5.94). However, non-quantified differences between groups, may limit the interpretation of the impact of the strategies.
Conclusions:
Preventive distributions combining a supplementary food and cash transfer had a better preventive effect on MAM and SAM than strategies relying on cash transfer or supplementary food alone. As a result, distribution of nutritious supplementary foods to young children in conjunction with household support should remain a pillar of emergency nutritional interventions. Additional rigorous research is vital to evaluate the effectiveness of these and other nutritional interventions in diverse settings.
Trial registration:
ClinicalTrials.gov NCT01828814
Please see later in the article for the Editors' Summary
Vyšlo v časopise:
Preventing Acute Malnutrition among Young Children in Crises: A Prospective Intervention Study in Niger. PLoS Med 11(9): e32767. doi:10.1371/journal.pmed.1001714
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pmed.1001714
Souhrn
Background:
Finding the most appropriate strategy for the prevention of moderate acute malnutrition (MAM) and severe acute malnutrition (SAM) in young children is essential in countries like Niger with annual “hunger gaps.” Options for large-scale prevention include distribution of supplementary foods, such as fortified-blended foods or lipid-based nutrient supplements (LNSs) with or without household support (cash or food transfer). To date, there has been no direct controlled comparison between these strategies leading to debate concerning their effectiveness. We compared the effectiveness of seven preventive strategies—including distribution of nutritious supplementary foods, with or without additional household support (family food ration or cash transfer), and cash transfer only—on the incidence of SAM and MAM among children aged 6–23 months over a 5-month period, partly overlapping the hunger gap, in Maradi region, Niger. We hypothesized that distributions of supplementary foods would more effectively reduce the incidence of acute malnutrition than distributions of household support by cash transfer.
Methods and Findings:
We conducted a prospective intervention study in 48 rural villages located within 15 km of a health center supported by Forum Santé Niger (FORSANI)/Médecins Sans Frontières in Madarounfa. Seven groups of villages (five to 11 villages) were allocated to different strategies of monthly distributions targeting households including at least one child measuring 60 cm–80 cm (at any time during the study period whatever their nutritional status): three groups received high-quantity LNS (HQ-LNS) or medium-quantity LNS (MQ-LNS) or Super Cereal Plus (SC+) with cash (€38/month [US$52/month]); one group received SC+ and family food ration; two groups received HQ-LNS or SC+ only; one group received cash only (€43/month [US$59/month]). Children 60 cm–80 cm of participating households were assessed at each monthly distribution from August to December 2011. Primary endpoints were SAM (weight-for-length Z-score [WLZ]<−3 and/or mid-upper arm circumference [MUAC]<11.5 cm and/or bipedal edema) and MAM (−3≤WLZ<−2 and/or 11.5≤MUAC<12.5 cm). A total of 5,395 children were included in the analysis (615 to 1,054 per group). Incidence of MAM was twice lower in the strategies receiving a food supplement combined with cash compared with the cash-only strategy (cash versus HQ-LNS/cash adjusted hazard ratio [HR] = 2.30, 95% CI 1.60–3.29; cash versus SC+/cash HR = 2.42, 95% CI 1.39–4.21; cash versus MQ-LNS/cash HR = 2.07, 95% CI 1.52–2.83) or with the supplementary food only groups (HQ-LNS versus HQ-LNS/cash HR = 1.84, 95% CI 1.35–2.51; SC+ versus SC+/cash HR = 2.53, 95% CI 1.47–4.35). In addition, the incidence of SAM was three times lower in the SC+/cash group compared with the SC+ only group (SC+ only versus SC+/cash HR = 3.13, 95% CI 1.65–5.94). However, non-quantified differences between groups, may limit the interpretation of the impact of the strategies.
Conclusions:
Preventive distributions combining a supplementary food and cash transfer had a better preventive effect on MAM and SAM than strategies relying on cash transfer or supplementary food alone. As a result, distribution of nutritious supplementary foods to young children in conjunction with household support should remain a pillar of emergency nutritional interventions. Additional rigorous research is vital to evaluate the effectiveness of these and other nutritional interventions in diverse settings.
Trial registration:
ClinicalTrials.gov NCT01828814
Please see later in the article for the Editors' Summary
Zdroje
1. BlackRE, VictoraCG, WalkerSP, BhuttaZA, ChristianP, et al. (2013) Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382: 427–451.
2. World Health Organization, World Food Programme, United Nations System Standing Committee on Nutrition, United Nations Children's Fund (2007) Community-based management of severe acute malnutrition. A Joint Statement by the World Health Organization, the World Food Programme, the United Nations System Standing Committee on Nutrition and the United Nations Children's Fund. Geneva: World Health Organization. Available: http://www.who.int/nutrition/topics/Statement_community_based_man_sev_acute_mal_eng.pdf. Accessed 19 January 2014.
3. World Health Organization, United Nations Children's Fund (2009) WHO child growth standards and identification of severe acute malnutrition in infants and children. A joint statement of the World Health Organization and the United Nations Children's Fund. Geneva: World Health Organization. Available: www.who.int/iris/bitstream/10665/44129/1/9789241598163_eng.pdf. Accessed 19 January 2014.
4. VictoraCG, de OnisM, HallalPC, BlössnerM, ShrimptonR (2010) Worldwide timing of growth faltering: revisiting implications for interventions. Pediatrics 125: e473–80.
5. World Health Organization (2013) Guideline update: Technical aspects of the management of severe acute malnutrition in infants and children. Geneva: WHO. Available: http://apps.who.int/iris/bitstream/10665/95584/1/9789241506328_eng.pdf. Accessed 19 January 2014.
6. World Health Organization, United Nations Children's Fund (2009) WHO child growth standards and the identification of severe acute malnutrition in infants and children. A Joint Statement by the World Health Organization and the United Nations Children's Fund. Geneva: World Health Organization. Available: http://apps.who.int/iris/bitstream/10665/44129/1/9789241598163_eng.pdf. Accessed 19 January 2014.
7. BhuttaZA, DasJK, RizviA, GaffeyMF, WalkerN, et al. (2013) Evidence-based interventions for improvement of maternal and child nutrition: what can be done and at what cost? Lancet 382: 452–477.
8. RuelMT, MenonP, HabichtJ-P, LoechlC, BergeronG, et al. (2008) Age-based preventive targeting of food assistance and behaviour change and communication for reduction of childhood undernutrition in Haiti: a cluster randomised trial. Lancet 371: 588–595.
9. DefournyI, MinettiA, HarcziG, DoyonS, ShepherdS, et al. (2009) A large-scale distribution of milk-based fortified spreads: evidence for a new approach in regions with high burden of acute malnutrition. PLoS ONE 4: e5455.
10. United Nations High Commissioner for Refugees, World Food Programme (2011) Guidelines for selective feeding: the management of malnutrition in emergencies. Geneva: UNHCR. Available: http://www.unhcr.org/4b7421fd20.pdf. Accessed 19 January 2014.
11. World Health Organization (2013) Essential nutrition actions: improving maternal, newborn, infant and young child health and nutrition. Geneva: WHO. Available: http://apps.who.int/iris/bitstream/10665/84409/1/9789241505550_eng.pdf. Accessed 19 January 2014.
12. World Food Programme (2012) Interventions Nutrition at the World Food Programme. Programming for Nutrition-Specific interventions. Rome: WFP. Available: http://documents.wfp.org/stellent/groups/public/documents/communications/wfp258650.pdf. Accessed 19 January 2014.
13. IsanakaS, RoedererT, DjiboA, LuqueroFJ, NombelaN, et al. (2010) Reducing wasting in young children with preventive supplementation: a cohort study in Niger. Pediatrics 126: e442–50.
14. IsanakaS, NombelaN, DjiboA, PoupardM, Van BeckhovenD, et al. (2009) Effect of preventive supplementation with ready-to-use therapeutic food on the nutritional status, mortality, and morbidity of children aged 6 to 60 months in Niger: a cluster randomized trial. JAMA 301: 277–285.
15. Adu-AfarwuahS, LarteyA, BrownKH, ZlotkinS, BriendA, et al. (2007) Randomized comparison of 3 types of micronutrient supplements for home fortification of complementary foods in Ghana: effects on growth and motor development. Am J Clin Nutr 86: 412–420.
16. KuusipaloH, MaletaK, BriendA, ManaryM, AshornP (2006) Growth and change in blood haemoglobin concentration among underweight Malawian infants receiving fortified spreads for 12 weeks: a preliminary trial. J Pediatr Gastroenterol Nutr 43: 525–532.
17. PhukaJC, MaletaK, ThakwalakwaC, CheungYB, BriendA, et al. (2009) Postintervention growth of Malawian children who received 12-mo dietary complementation with a lipid-based nutrient supplement or maize-soy flour. Am J Clin Nutr 89: 382–390.
18. PhukaJC, MaletaK, ThakwalakwaC, CheungYB, BriendA, et al. (2008) Complementary feeding with fortified spread and incidence of severe stunting in 6- to 18-month-old rural Malawians. Arch Pediatr Adolesc Med 162: 619–626.
19. HuybregtsL, HoungbeF, Ait-aissaM, KolsterenP (2012) The effect of adding ready-to-use supplementary food to a general food distribution on child nutritional status and morbidity: a cluster-randomized controlled trial. PLoS Med 9: e1001313.
20. World Health Organization, United Nations Children's Fund, World FoodProgramme, United Nations High Commissioner for Refugees (2010) Follow-up meeting of the joint WHO/UNICEF/WFP/UNHCR consultation on the dietary management of moderate malnutrition. Geneva: WHO. Available: http://www.unicef.org/nutritioncluster/files/MM1_follow_up_29_June_2010.pdf. Accessed 19 January 2014.
21. LagroneLN, TrehanI, MeuliGJ, WangRJ, ThakwalakwaC, et al. (2011) A novel fortified blended flour, corn-soy blend “plus-plus,” is not inferior to lipid-based ready-to-use supplementary foods for the treatment of moderate acute malnutrition in Malawian children. Am J Clin Nutr 95: 212–219.
22. GrelletyE, ShepherdS, RoedererT, ManzoML, DoyonS, et al. (2012) Effect of mass supplementation with ready-to-use supplementary food during an anticipated nutritional emergency. PLoS ONE 7: e44549.
23. Sridhar D, Duffield A (2006) A review of the impact of cash transfer programmes on child nutrition status and some implications for Save the Children UK programmes. London, United Kingdom: Save The Children UK. Available: http://www.savethechildren.org.uk/sites/default/files/docs/cash_transfer_prog_nutrition_1.pdf. Accessed 19 January 2014.
24. AttanasioO, GómezLC, HerediaP, Vera-HernándezM (2005) The short-term impact of a conditional cash subsidy on child health and nutrition in Colombia. Centre for the Evaluation of Development Policies. The Institute for Fiscal Studies Available: http://www.ifs.org.uk/publications/3503. Accessed 19 January 2014.
25. GertlerP (2004) Do conditional cash transfers improve child health? Evidence from PROGRESA's control randomized experiment. Am Econ Rev 94: 336–341.
26. FernaldLCH, GertlerPJ, NeufeldLM (2008) Role of cash in conditional cash transfer programmes for child health, growth, and development: an analysis of Mexico's Oportunidades. Lancet 371: 828–837.
27. MaluccioJA, FloresR (2004) Impact evaluation of a conditional cash transfer program: the Nicaraguan red de proteccion social. Available: http://www.ifpri.org/sites/default/files/pubs/pubs/abstract/141/rr141.pdf. Accessed 19 January 2014.
28. Paes-SousaR, SantosLMP, MiazakiÉS (2011) Effects of a conditional cash transfer programme on child nutrition in Brazil. Bull World Health Organ 89: 496–503.
29. RasellaD, AquinoR, SantosCAT, Paes-SousaR, BarretoML (2013) Effect of a conditional cash transfer programme on childhood mortality: a nationwide analysis of Brazilian municipalities. Lancet 382: 57–64.
30. Save The Children UK (2009) How cash transfers can improve the nutrition of the poorest children. Evaluation of a pilot safety net programme in southern Niger Available: http://www.savethechildren.org.uk/en/54_7871.htm. Accessed 19 January 2014.
31. ZwarensteinM, TreweekS, GagnierJJ, AltmanDG, TunisS, et al. (2008) Improving the reporting of pragmatic trials: an extension of the CONSORT statement. BMJ 337: a2390–a2390.
32. United Nations Children's Fund (2012) Children in crisis in the Sahel. Progress report. Burkina Faso, Cameroon, Chad, Gambia, Mali, Mauritania, Niger, Nigeria, Senegal Available: http://www.unicef.org/infobycountry/files/UNICEF_SAHEL_EmrgRprt_11.12.12.pdf. Accessed 19 January 2014.
33. United Nations Children's Fund Niger (2013) Monthly Humanitarian Situation Report. Highlights Situation Overview & Humanitarian Needs Available: http://reliefweb.int/sites/reliefweb.int/files/resources/UNICEF Niger SitRep January 2013.pdf. Accessed 19 January 2014.
34. National Institute of Statistics and the Nutrition Department of the Ministry of Health in Niger (2011) National survey report. Nutrition surveys on children aged 6 to 59 months. Niamey: Department of the Ministry of Health in Niger.
35. Save The Children UK (2009) Understanding household economy in rural Niger. London, UK: Save The Children UK. Available: http://resourcecentre.savethechildren.se/library/understanding-household-economy-rural-niger. Accessed 19 January 2014.
36. Government of Niger (2011) Household food security survey. Niamey: Government of Niger.
37. World Health Organization (2006) WHO child growth standards: length/height-for-age, weight-for-age, weight-for-length, weight-forheight and body mass index-for-age: methods and development. Geneva. Available: http://www.who.int/childgrowth/standards/Technical_report.pdf. Accessed 19 January 2014.
38. IsanakaS, GraisRF, BriendA, ChecchiF (2011) Estimates of the duration of untreated acute malnutrition in children from Niger. Am J Epidemiol 173: 932–940.
39. HallA, OirereM, ThurstansS, NdumiA, SibsonV (2011) The practical challenges of evaluating a blanket emergency feeding programme in northern Kenya. PLoS ONE 6: e26854.
40. PoulseneL, FabreD (2011) UNICEF Emergency Project Niger. Cash Transfers for protection of Blanket feeding. Maradi and Tahoua regions. Independent final evaluation Available: http://www.unicef.org/evaluation/files/HQ_2010-007_UNICEF_Cash_Transfer_-_Final_Evaluation.pdf. Accessed 19 January 2014.
41. Ministry of Public Health Niger, UNICEF, WHO (2012) Protocole national de la prise en charge intégrée de la malnutrition aiguë. Niamey: Ministry of Public Health Niger.
42. Global Nutrition Cluster (2012) Moderate acute malnutrition: a decision for emergencies. Available: http://www.unicef.org/nutritioncluster/files/MAM_DecisionTool_July_2012_with_Cover.pdf.
43. The Corp Group (2011) Booklet on key ENA massage. Essential nutrition actions framework Available: http://www.thp.org/files/Booklet_of_Key_ENA_Messages_complete_for_web.pdf.
44. World Health Organization, The Johns Hopkins School of Hygiene and Public Health, The London School of Hygiene and Tropical Medicine (1999) A standard verbal autopsy method for investigating causes of death in infants and children. Geneva: World Health Organization. Available: http://www.who.int/csr/resources/publications/surveillance/whocdscsrisr994.pdf. Accessed 19 January 2014.
45. SchaubelDE (2005) Variance estimation for clustered recurrent event data with a small number of clusters. Stat Med 24: 3037–3051 doi:10.1002/sim.2157
46. RosenbaumP, RubinD (1983) The central role of the propensity score in observational studies for causal effects. Biometrika 70: 41–55.
47. D'AgostinoRB (1998) Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med 17: 2265–2281.
48. ImbensG (2000) The role of propensity score in estimating the dose-response effect. Biometrika 87: 706–710.
49. LittleRJ, LongQ, LinX (2009) A comparison of methods for estimating the causal effect of a treatment in randomized clinical trials subject to noncompliance. Biometrics 65: 640–649.
50. MickeyRM, GreenlandS (1989) The impact of confounder selection criteria on effect estimation. Am J Epidemiol 129: 125–137 Available: http://www.ncbi.nlm.nih.gov/pubmed/2910056. Accessed 30 May 2014.
51. RosenbaumPR, RubinDB (1985) The bias due to incomplete matching. Biometrics 41: 103–116.
52. ShafferJP (1995) Multiple hypothesis testing. Annu Rev Psychol 561–584.
53. JaccardJ, BeckerMA, WoodG (1984) Pairwise multiple comparison procedures: A review. Psychol Bull 96: 589–596.
54. DeweyKG (2013) The challenge of meeting nutrient needs of infants and young children during the period of complementary feeding: an evolutionary perspective. J Nutr 143: 2050–2054.
55. BaldiG, MartiniE, CatharinaM, MuslimatunS, FahmidaU, et al. (2013) Cost of the Diet (CoD) tool: first results from Indonesia and applications for policy discussion on food and nutrition security. Food Nutr Bull 34: S35–S42.
56. FergusonEL, DarmonN, FahmidaU, FitriyantiS, HarperTB, et al. (2006) Design of optimal food-based complementary feeding recommendations and identification of key “problem nutrients” using goal programming. J Nutr 136: 2399–2404.
57. ChaparroCM, DeweyKG (2010) Use of lipid-based nutrient supplements (LNS) to improve the nutrient adequacy of general food distribution rations for vulnerable sub-groups in emergency settings. Matern Child Nutr 6 Suppl 1: 1–69.
58. BalloM, BauerJ-M (2013) United Nations World Food Programme. The economics of early response and resilience in Niger Available: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/228502/TEERR_Niger_Background_Report.pdf. Accessed 15 November 2013.
59. Harvey P (2005) HPG Discussion Paper Cash and vouchers in emergencies. Available: http://www.odi.org.uk/sites/odi.org.uk/files/odi-assets/publications-opinion-files/432.pdf. Accessed 19 January 2014.
60. WangRJ, TrehanI, LaGroneLN, WeiszAJ, ThakwalakwaCM, et al. (2013) Investigation of food acceptability and feeding practices for lipid nutrient supplements and blended flours used to treat moderate malnutrition. J Nutr Educ Behav 45: 258–263.
61. CohuetS, MarquerC, ShepherdS, CaptierV, LangendorfC, et al. (2012) Intra-household use and acceptability of Ready-to-Use-Supplementary-Foods distributed in Niger between July and December 2010. Appetite 58: 698–705.
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2014 Číslo 9
- Statinová intolerance
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Co dělat při intoleranci statinů?
- Pleiotropní účinky statinů na kardiovaskulární systém
- DESATORO PRE PRAX: Aktuálne odporúčanie ESPEN pre nutričný manažment u pacientov s COVID-19
Najčítanejšie v tomto čísle
- Proton Pump Inhibitors and Hospitalization with Hypomagnesemia: A Population-Based Case-Control Study
- Monitoring and Evaluating Progress towards Universal Health Coverage in Chile
- Malaria Prevention during Pregnancy—Is There a Next Step Forward?
- The PLOS “Monitoring Universal Health Coverage” Collection: Managing Expectations