#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

HIV Integration Targeting: A Pathway Involving Transportin-3 and the Nuclear Pore Protein RanBP2


Genome-wide siRNA screens have identified host cell factors important for efficient HIV infection, among which are nuclear pore proteins such as RanBP2/Nup358 and the karyopherin Transportin-3/TNPO3. Analysis of the roles of these proteins in the HIV replication cycle suggested that correct trafficking through the pore may facilitate the subsequent integration step. Here we present data for coupling between these steps by demonstrating that depletion of Transportin-3 or RanBP2 altered the terminal step in early HIV replication, the selection of chromosomal sites for integration. We found that depletion of Transportin-3 and RanBP2 altered integration targeting for HIV. These knockdowns reduced HIV integration frequency in gene-dense regions and near gene-associated features, a pattern that differed from that reported for depletion of the HIV integrase binding cofactor Psip1/Ledgf/p75. MLV integration was not affected by the Transportin-3 knockdown. Using siRNA knockdowns and integration targeting analysis, we also implicated several additional nuclear proteins in proper target site selection. To map viral determinants of integration targeting, we analyzed a chimeric HIV derivative containing MLV gag, and found that the gag replacement phenocopied the Transportin-3 and RanBP2 knockdowns. Thus, our data support a model in which Gag-dependent engagement of the proper transport and nuclear pore machinery mediate trafficking of HIV complexes to sites of integration.


Vyšlo v časopise: HIV Integration Targeting: A Pathway Involving Transportin-3 and the Nuclear Pore Protein RanBP2. PLoS Pathog 7(3): e32767. doi:10.1371/journal.ppat.1001313
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001313

Souhrn

Genome-wide siRNA screens have identified host cell factors important for efficient HIV infection, among which are nuclear pore proteins such as RanBP2/Nup358 and the karyopherin Transportin-3/TNPO3. Analysis of the roles of these proteins in the HIV replication cycle suggested that correct trafficking through the pore may facilitate the subsequent integration step. Here we present data for coupling between these steps by demonstrating that depletion of Transportin-3 or RanBP2 altered the terminal step in early HIV replication, the selection of chromosomal sites for integration. We found that depletion of Transportin-3 and RanBP2 altered integration targeting for HIV. These knockdowns reduced HIV integration frequency in gene-dense regions and near gene-associated features, a pattern that differed from that reported for depletion of the HIV integrase binding cofactor Psip1/Ledgf/p75. MLV integration was not affected by the Transportin-3 knockdown. Using siRNA knockdowns and integration targeting analysis, we also implicated several additional nuclear proteins in proper target site selection. To map viral determinants of integration targeting, we analyzed a chimeric HIV derivative containing MLV gag, and found that the gag replacement phenocopied the Transportin-3 and RanBP2 knockdowns. Thus, our data support a model in which Gag-dependent engagement of the proper transport and nuclear pore machinery mediate trafficking of HIV complexes to sites of integration.


Zdroje

1. RoeT

ReynoldsTC

YuG

BrownPO

1993 Integration of murine leukemia virus DNA depends on mitosis. EMBO J 12 2099 2108

2. LewisPF

EmermanM

1994 Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 68 510 516

3. BukrinskyMI

SharovaN

DempseyMP

StanwickTL

BukrinskayaAG

1992 Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc Natl Acad Sci U S A 89 6580 6584

4. von SchwedlerU

KornbluthRS

TronoD

1994 The nuclear localization signal of the matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent T lymphocytes. Proc Natl Acad Sci U S A 91 6992 6996

5. HeinzingerNK

BukrinskyMI

HaggertySA

RaglandAM

Kewalramani VK

1994 The vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci U S A 91 7311 7315

6. BrassAL

DykxhoornDM

BenitaY

YanN

EngelmanA

2008 Identification of host proteins required for HIV infection through a functional genomic screen. Science 319 921 926

7. KonigR

ZhouY

EllederD

DiamondTL

BonamyGM

2008 Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 135 49 60

8. ZhouH

XuM

HuangQ

GatesAT

ZhangXD

2008 Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 4 495 504

9. ChristF

ThysW

De RijckJ

GijsbersR

AlbaneseA

2008 Transportin-SR2 imports HIV into the nucleus. Curr Biol 18 1192 1202

10. SuzukiY

CraigieR

2007 The road to chromatin - nuclear entry of retroviruses. Nat Rev Microbiol 5 187 196

11. EbinaH

AokiJ

HattaS

YoshidaT

KoyanagiY

2004 Role of Nup98 in nuclear entry of human immunodeficiency virus type 1 cDNA. Microbes Infect 6 715 724

12. KatzRA

GregerJG

BoimelP

SkalkaAM

2003 Human immunodeficiency virus type 1 DNA nuclear import and integration are mitosis independent in cycling cells. J Virol 77 13412 13417

13. SchroderAR

ShinnP

ChenH

BerryC

EckerJR

2002 HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110 521 529

14. MitchellRS

BeitzelBF

SchroderAR

ShinnP

ChenH

2004 Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2 E234

15. WuX

LiY

CriseB

BurgessSM

2003 Transcription start regions in the human genome are favored targets for MLV integration. Science 300 1749 1751

16. CarteauS

HoffmannC

BushmanFD

1998 Chromosome structure and HIV-1 cDNA integration: Centromeric alphoid repeats are a disfavored target. J. Virol 72 4005 4014

17. HolmanAG

CoffinJM

2005 Symmetrical base preferences surrounding HIV-1, avian sarcoma/leukosis virus, and murine leukemia virus integration sites. Proc Natl Acad Sci U S A 102 6103 6107

18. BerryC

HannenhalliS

LeipzigJ

BushmanFD

2006 Selection of target sites for mobile DNA integration in the human genome. PLoS Comput Biol 2 e157

19. VerdinE

1991 DNase I-hypersensitive sites are associated with both long terminal repeats and with the intragenic enhancer of integrated human immunodeficiency virus type 1. J Virol 65 6790 6799

20. LewinskiM

BisgroveD

ShinnP

ChenH

VerdinE

2005 Genome-wide analysis of chromosomal features repressing HIV transcription. J Virol 79 6610 6619

21. WeinbergerLS

BurnettJC

ToettcherJE

ArkinAP

SchafferDV

2005 Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 tat fluctuations drive phenotypic diversity. Cell 122 169 182

22. CherepanovP

MaertensG

ProostP

DevreeseB

Van BeeumenJ

2003 HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J Biol Chem 278 372 381

23. EmilianiS

MousnierA

BusschotsK

MarounM

Van MaeleB

2005 Integrase mutants defective for interaction with LEDGF/p75 are impaired in chromosome tethering and HIV-1 replication. J Biol Chem 280 25517 25523

24. MaertensG

CherepanovP

PluymersW

BusschotsK

De ClercqE

2003 LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells. J Biol Chem 278 33528 33539

25. LlanoM

VanegasM

FregosoO

SaenzD

ChungS

2004 LEDGF/p75 determines cellular trafficking of diverse lentiviral but not murine oncoretroviral integrase proteins and is a component of functional lentiviral preintegration complexes. J Virol 78 9524 9537

26. ShunMC

RaghavendraNK

VandegraaffN

DaigleJE

HughesS

2007 LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev 21 1767 1778

27. MarshallH

RonenK

BerryC

LlanoM

SutherlandH

2007 Role of PSIP1/LEDGF/p75 in lentiviral infectivity and integration targeting. PLoS One 2 e1340

28. CiuffiA

LlanoM

PoeschlaE

HoffmannC

LeipzigJ

2005 A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 11 1287 1289

29. SilversRM

SmithJA

SchowalterM

LitwinS

LiangZ

2010 Modification of integration site preferences of an HIV-1-based vector by expression of a novel synthetic protein. Hum Gene Ther 21 337 349

30. GijsbersR

RonenK

VetsS

MalaniN

De RijckJ

2010 LEDGF hybrids efficiently retarget lentiviral integration into heterochromatin. Mol Ther 18 552 560

31. FerrisAL

WuX

HughesCM

StewartC

SmithSJ

2010 Lens epithelium-derived growth factor fusion proteins redirect HIV-1 DNA integration. Proc Natl Acad Sci U S A 107 3135 3140

32. LaiMC

LinRI

HuangSY

TsaiCW

TarnWY

2000 A human importin-beta family protein, transportin-SR2, interacts with the phosphorylated RS domain of SR proteins. J Biol Chem 275 7950 7957

33. WuJ

MatunisMJ

KraemerD

BlobelG

CoutavasE

1995 Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J Biol Chem 270 14209 14213

34. LeeK

AmbroseZ

MartinTD

OztopI

MulkyA

2010 Flexible use of nuclear import pathways by HIV-1. Cell Host Microbe 7 221 233

35. YamashitaM

PerezO

HopeTJ

EmermanM

2007 Evidence for direct involvement of the capsid protein in HIV infection of nondividing cells. PLoS Pathog 3 1502 1510

36. WangGP

CiuffiA

LeipzigJ

BerryCC

BushmanFD

2007 HIV integration site selection: Analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res 17 1186 1194

37. LanderE

2001 Initial sequencing and analysis of the human genome. Nature 409 860 921

38. VenterJC

2001 The sequence of the human genome. Science 291 1304 1351

39. KrishnanL

MatreyekKA

OztopI

LeeK

TipperCH

2010 The requirement for cellular transportin 3 (TNPO3 or TRN-SR2) during infection maps to human immunodeficiency virus type 1 capsid and not integrase. J Virol 84 397 406

40. LewinskiMK

YamashitaM

EmermanM

CiuffiA

MarshallH

2006 Retroviral DNA integration: Viral and cellular determinants of target-site selection. PLoS Pathog 2 e60

41. YamashitaM

EmermanM

2004 Capsid is a dominant determinant of retrovirus infectivity in nondividing cells. J Virol 78 5670 5678

42. XingY

JohnsonCV

MoenPT

Jr

McNeilJA

LawrenceJ

1995 Nonrandom gene organization: Structural arrangements of specific pre-mRNA transcription and splicing with SC-35 domains. J Cell Biol 131 1635 1647

43. SimonisM

KlousP

SplinterE

MoshkinY

WillemsenR

2006 Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38 1348 1354

44. OsborneCS

ChakalovaL

BrownKE

CarterD

HortonA

2004 Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36 1065 1071

45. CasolariJM

BrownCR

KomiliS

WestJ

HieronymusH

2004 Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117 427 439

46. BricknerJH

WalterP

2004 Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol 2 e342

47. CabalGG

GenovesioA

Rodriguez-NavarroS

ZimmerC

GadalO

2006 SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441 770 773

48. TaddeiA

Van HouweG

HedigerF

KalckV

CubizollesF

2006 Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441 774 778

49. KurshakovaMM

KrasnovAN

KopytovaDV

ShidlovskiiYV

NikolenkoJV

2007 SAGA and a novel drosophila export complex anchor efficient transcription and mRNA export to NPC. EMBO J 26 4956 4965

50. MendjanS

TaipaleM

KindJ

HolzH

GebhardtP

2006 Nuclear pore components are involved in the transcriptional regulation of dosage compensation in drosophila. Mol Cell 21 811 823

51. BarrSD

CiuffiA

LeipzigJ

ShinnP

EckerJR

2006 HIV integration site selection: Targeting in macrophages and the effects of different routes of viral entry. Mol Ther 14 218 225

52. FollenziA

AilesLE

BakovicS

GueunaM

NaldiniL

2000 Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genetics 25 217 222

53. NaldiniL

BlomerU

GallayP

OryD

MulliganR

1996 In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272 263 267

54. WangGP

GarrigueA

CiuffiA

RonenK

LeipzigJ

2008 DNA bar coding and pyrosequencing to analyze adverse events in therapeutic gene transfer. Nucleic Acids Res 36 e49

55. BradyT

AgostoLM

MalaniN

BerryCC

O'DohertyU

2009 HIV integration site distributions in resting and activated CD4+ T cells infected in culture. AIDS 23 1461 1471

56. BradyT

LeeYN

RonenK

MalaniN

BerryCC

2009 Integration target site selection by a resurrected human endogenous retrovirus. Genes Dev 23 633 642

57. PryciakPM

VarmusHE

1992 Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell 69 769 780

58. PryciakPM

SilA

VarmusHE

1992 Retroviral integration into minichromosomes in vitro. EMBO J 11 291 303

59. PrussD

BushmanFD

WolffeAP

1994 Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core. Proc Natl Acad Sci U S A 91 5913 5917

60. PrussD

ReevesR

BushmanFD

WolffeAP

1994 The influence of DNA and nucleosome structure on integration events directed by HIV integrase. J Biol Chem 269 25031 25041

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#