Chemokine Receptor Ccr1 Drives Neutrophil-Mediated Kidney Immunopathology and Mortality in Invasive Candidiasis
Invasive candidiasis is the 4th leading cause of nosocomial bloodstream infection in the US with mortality that exceeds 40% despite administration of antifungal therapy; neutropenia is a major risk factor for poor outcome after invasive candidiasis. In a fatal mouse model of invasive candidiasis that mimics human bloodstream-derived invasive candidiasis, the most highly infected organ is the kidney and neutrophils are the major cellular mediators of host defense; however, factors regulating neutrophil recruitment have not been previously defined. Here we show that mice lacking chemokine receptor Ccr1, which is widely expressed on leukocytes, had selectively impaired accumulation of neutrophils in the kidney limited to the late phase of the time course of the model; surprisingly, this was associated with improved renal function and survival without affecting tissue fungal burden. Consistent with this, neutrophils from wild-type mice in blood and kidney switched from Ccr1lo to Ccr1high at late time-points post-infection, when Ccr1 ligands were produced at high levels in the kidney and were chemotactic for kidney neutrophils ex vivo. Further, when a 1∶1 mixture of Ccr1+/+ and Ccr1−/− donor neutrophils was adoptively transferred intravenously into Candida-infected Ccr1+/+ recipient mice, neutrophil trafficking into the kidney was significantly skewed toward Ccr1+/+ cells. Thus, neutrophil Ccr1 amplifies late renal immunopathology and increases mortality in invasive candidiasis by mediating excessive recruitment of neutrophils from the blood to the target organ.
Vyšlo v časopise:
Chemokine Receptor Ccr1 Drives Neutrophil-Mediated Kidney Immunopathology and Mortality in Invasive Candidiasis. PLoS Pathog 8(8): e32767. doi:10.1371/journal.ppat.1002865
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1002865
Souhrn
Invasive candidiasis is the 4th leading cause of nosocomial bloodstream infection in the US with mortality that exceeds 40% despite administration of antifungal therapy; neutropenia is a major risk factor for poor outcome after invasive candidiasis. In a fatal mouse model of invasive candidiasis that mimics human bloodstream-derived invasive candidiasis, the most highly infected organ is the kidney and neutrophils are the major cellular mediators of host defense; however, factors regulating neutrophil recruitment have not been previously defined. Here we show that mice lacking chemokine receptor Ccr1, which is widely expressed on leukocytes, had selectively impaired accumulation of neutrophils in the kidney limited to the late phase of the time course of the model; surprisingly, this was associated with improved renal function and survival without affecting tissue fungal burden. Consistent with this, neutrophils from wild-type mice in blood and kidney switched from Ccr1lo to Ccr1high at late time-points post-infection, when Ccr1 ligands were produced at high levels in the kidney and were chemotactic for kidney neutrophils ex vivo. Further, when a 1∶1 mixture of Ccr1+/+ and Ccr1−/− donor neutrophils was adoptively transferred intravenously into Candida-infected Ccr1+/+ recipient mice, neutrophil trafficking into the kidney was significantly skewed toward Ccr1+/+ cells. Thus, neutrophil Ccr1 amplifies late renal immunopathology and increases mortality in invasive candidiasis by mediating excessive recruitment of neutrophils from the blood to the target organ.
Zdroje
1. ZaoutisTE, ArgonJ, ChuJ, BerlinJA, WalshTJ, et al. (2005) The epidemiology and attributable outcomes of candidemia in adults and children hospitalized in the United States: a propensity analysis. Clin Infect Dis 41: 1232–1239.
2. MillerLG, HajjehRA, EdwardsJEJr (2001) Estimating the cost of nosocomial candidemia in the united states. Clin Infect Dis 32: 1110.
3. WilsonLS, ReyesCM, StolpmanM, SpeckmanJ, AllenK, et al. (2002) The direct cost and incidence of systemic fungal infections. Value Health 5: 26–34.
4. PappasPG (2006) Invasive candidiasis. Infect Dis Clin North Am 20: 485–506.
5. SpellbergB, IbrahimAS, EdwardsJEJr, FillerSG (2005) Mice with disseminated candidiasis die of progressive sepsis. J Infect Dis 192: 336–343.
6. SzaboEK, MacCallumDM (2011) The contribution of mouse models to our understanding of systemic candidiasis. FEMS Microbiol Lett 320: 1–8.
7. LegrandF, LecuitM, DupontB, BellatonE, HuerreM, et al. (2008) Adjuvant corticosteroid therapy for chronic disseminated candidiasis. Clin Infect Dis 46: 696–702.
8. LionakisMS, LimJK, LeeCC, MurphyPM (2011) Organ-specific innate immune responses in a mouse model of invasive candidiasis. J Innate Immun 3: 180–199.
9. FulurijaA, AshmanRB, PapadimitriouJM (1996) Neutrophil depletion increases susceptibility to systemic and vaginal candidiasis in mice, and reveals differences between brain and kidney in mechanisms of host resistance. Microbiology 142: 3487–3496.
10. QianQ, JutilaMA, Van RooijenN, CutlerJE (1994) Elimination of mouse splenic macrophages correlates with increased susceptibility to experimental disseminated candidiasis. J Immunol 152: 5000–5008.
11. MahantyS, GreenfieldRA, JoyceWA, KincadePW (1988) Inoculation candidiasis in a murine model of severe combined immunodeficiency syndrome. Infect Immun 56: 3162–3166.
12. WinkelsteinJA, MarinoMC, JohnstonRBJr, BoyleJ, CurnutteJ, et al. (2000) Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) 79: 155–169.
13. VonkAG, NeteaMG, van KriekenJH, IwakuraY, van der MeerJW, et al. (2006) Endogenous interleukin (IL)-1 alpha and IL-1 beta are crucial for host defense against disseminated candidiasis. J Infect Dis 193: 1419–1426.
14. StuytRJ, NeteaMG, VerschuerenI, FantuzziG, DinarelloCA, et al. (2002) Role of interleukin-18 in host defense against disseminated Candida albicans infection. Infect Immun 70: 3284–3286.
15. NeteaMG, van TitsLJ, CurfsJH, AmiotF, MeisJF, et al. (1999) Increased susceptibility of TNF-alpha lymphotoxin-alpha double knockout mice to systemic candidiasis through impaired recruitment of neutrophils and phagocytosis of Candida albicans. J Immunol 163: 1498–1505.
16. van EnckevortFH, NeteaMG, HermusAR, SweepCG, MeisJF, et al. (1999) Increased susceptibility to systemic candidiasis in interleukin-6 deficient mice. Med Mycol 37: 419–426.
17. MencacciA, CenciE, Del SeroG, Fé d'OstianiC, MosciP, et al. (1998) IL-10 is required for development of protective Th1 responses in IL-12-deficient mice upon Candida albicans infection. J Immunol 161: 6228–6237.
18. LavigneLM, SchopfLR, ChungCL, MaylorR, SypekJP (1998) The role of recombinant murine IL-12 and IFN-gamma in the pathogenesis of a murine systemic Candida albicans infection. J Immunol 160: 284–292.
19. Vazquez-TorresA, Jones-CarsonJ, WagnerRD, WarnerT, BalishE (1999) Early resistance of interleukin-10 knockout mice to acute systemic candidiasis. Infect Immun 67: 670–674.
20. BalishE, WarnerTF, NicholasPJ, PaullingEE, WestwaterC, et al. (2005) Susceptibility of germfree phagocyte oxidase- and nitric oxide synthase 2-deficient mice, defective in the production of reactive metabolites of both oxygen and nitrogen, to mucosal and systemic candidiasis of endogenous origin. Infect Immun 73: 1313–1320.
21. HuangW, NaL, FidelPL, SchwarzenbergerP (2004) Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis 190: 624–631.
22. MurphyPM, BaggioliniM, CharoIF, HébertCA, HorukR, et al. (2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 52: 145–176.
23. TsouCL, PetersW, SiY, SlaymakerS, SlaymakerS, et al. (2007) Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest 117: 902–909.
24. IchimuraT, BonventreJV, BaillyV, WeiH, HessionCA, et al. (1998) Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem 273: 4135–4142.
25. VaidyaVS, OzerJS, DieterleF, CollingsFB, RamirezV, et al. (2010) Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat Biotechnol 28: 478–485.
26. KarlmarkKR, ZimmermannHW, RoderburgC, GasslerN, WasmuthHE, et al. (2010) The fractalkine receptor CX3CR1 protects against liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes. Hepatology 52: 1769–1782.
27. GaoJL, WynnTA, ChangY, LeeEJ, BroxmeyerHE, et al. (1997) Impaired host defense, hematopoiesis, granulomatous inflammation and type 1-type 2 cytokine balance in mice lacking CC chemokine receptor 1. J Exp Med 185: 1959–1968.
28. GerardC, FrossardJL, BhatiaM, SalujaA, GerardNP, et al. (1997) Targeted disruption of the beta-chemokine receptor CCR1 protects against pancreatitis-associated lung injury. J Clin Invest 100: 2022–2027.
29. HeM, HorukR, MoochhalaSM, BhatiaM (2007) Treatment with BX471, a CC chemokine receptor 1 antagonist, attenuates systemic inflammatory response during sepsis. Am J Physiol Gastrointest Liver Physiol 292: 1173–1180.
30. ZhangS, YounBS, GaoJL, MurphyPM, KwonBS (1999) Differential effects of leukotactin-1 and macrophage inflammatory protein-1 alpha on neutrophils mediated by CCR1. J Immunol 162: 4938–4942.
31. SchuitKE (1979) Phagocytosis and intracellular killing of pathogenic yeasts by human monocytes and neutrophils. Infect Immun 24: 932–938.
32. UzunO, AsciogluS, AnaissieEJ, RexJH (2001) Risk factors and predictors of outcome in patients with cancer and breakthrough candidemia. Clin Infect Dis 32: 1713–1717.
33. RomaniL, MencacciA, CenciE, Del SeroG, BistoniF, et al. (1997) An immunoregulatory role for neutrophils in CD4+ T helper subset selection in mice with candidiasis. J Immunol 158: 2356–2362.
34. MiceliMH, MaertensJ, BuvéK, GrazziuttiM, WoodsG, et al. (2007) Immune reconstitution inflammatory syndrome in cancer patients with pulmonary aspergillosis recovering from neutropenia: Proof of principle, description, and clinical and research implications. Cancer 110: 112–120.
35. KhanIA, MurphyPM, CasciottiL, SchwartzmanJD, CollinsJ, et al. (2001) Mice lacking the chemokine receptor CCR1 show increased susceptibility to Toxoplasma gondii infection. J Immunol 166: 1930–1937.
36. DomachowskeJB, BonvilleCA, GaoJL, MurphyPM, EastonAJ, et al. (2000) The chemokine macrophage-inflammatory protein-1 alpha and its receptor CCR1 control pulmonary inflammation and antiviral host defense in paramyxovirus infection. J Immunol 165: 2677–2682.
37. FuruichiK, GaoJL, HorukR, WadaT, KanekoS, et al. (2008) Chemokine receptor CCR1 regulates inflammatory cell infiltration after renal ischemia-reperfusion injury. J Immunol 181: 8670–8676.
38. VielhauerV, BerningE, EisV, KretzlerM, SegererS, et al. (2004) CCR1 blockade reduces interstitial inflammation and fibrosis in mice with glomerulosclerosis and nephrotic syndrome. Kidney Int 66: 2264–2278.
39. NinichukV, GrossO, ReichelC, KhandogaA, PawarRD, et al. (2005) Delayed chemokine receptor 1 blockade prolongs survival in collagen 4A3-deficient mice with Alport disease. J Am Soc Nephrol 16: 977–985.
40. EisV, LuckowB, VielhauerV, SivekeJT, LindeY, et al. (2004) Chemokine receptor CCR1 but not CCR5 mediates leukocyte recruitment and subsequent renal fibrosis after unilateral ureteral obstruction. J Am Soc Nephrol 15: 337–347.
41. AndersHJ, VielhauerV, FrinkM, LindeY, CohenCD, et al. (2002) A chemokine receptor CCR-1 antagonist reduces renal fibrosis after unilateral ureter ligation. J Clin Invest 109: 251–259.
42. TophamPS, CsizmadiaV, SolerD, HinesD, GerardCJ, et al. (1999) Lack of chemokine receptor CCR1 enhances Th1 responses and glomerular injury during nephrotoxic nephritis. J Clin Invest 104: 1549–1557.
43. BonecchiR, PolentaruttiN, LuiniW, BorsattiA, BernasconiS, et al. (1999) Up-regulation of CCR1 and CCR3 and induction of chemotaxis to CC chemokines by IFN-gamma in human neutrophils. J Immunol 162: 474–479.
44. ChengSS, LaiJJ, LukacsNW, KunkelSL (2001) Granulocyte-macrophage colony stimulating factor up-regulates CCR1 in human neutrophils. J Immunol 166: 1178–1184.
45. van de VeerdonkFL, KullbergBJ, van der MeerJW, GowNA, NeteaMG (2008) Host-microbe interactions: innate pattern recognition of fungal pathogens. Curr Opin Microbiol 11: 305–312.
46. WheelerRT, KombeD, AgarwalaSD, FinkGR (2008) Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment. PLoS Pathog 4: e1000227.
47. ChouRC, KimND, SadikCD, SeungE, LanY, et al. (2010) Lipid-cytokine-chemokine cascade drives neutrophil recruitment in a murine model of inflammatory arthritis. Immunity 33: 266–278.
48. BalishE, WagnerRD, Vazquez-TorresA, Jones-CarsonJ, PiersonC, et al. (1999) Mucosal and systemic candidiasis in IL-8Rh−/− BALB/c mice. J Leukoc Biol 66: 144–150.
49. BryantK, MaxfieldC, RabalaisG (1999) Renal candidiasis in neonates with candiduria. Pediatr Infect Dis J 18: 959–963.
50. KohAY, KöhlerJR, CoggshallKT, Van RooijenN, PierGB (2008) Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog 4: e35.
51. IchimuraT, AsseldonkEJ, HumphreysBD, GunaratnamL, DuffieldJS, et al. (2008) Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest 118: 1657–1668.
52. KolotilaMP, DiamondRD (1988) Stimulation of neutrophil actin polymerization and degranulation by opsonized and unopsonized Candida albicans hyphae and zymosan. Infect Immun 56: 2016–2022.
53. JirapongsananurukO, MalechHL, KuhnsDB, NiemelaJE, BrownMR, et al. (2003) Diagnostic paradigm for evaluation of male patients with chronic granulomatous disease, based on the dihydrorhodamine 123 assay. J Allergy Clin Immunol 111: 374–379.
54. VonkAG, NeteaMG, KullbergBJ (2012) Phagocytosis and intracellular killing of Candida albicans by murine polymorphonuclear neutrophils. Methods Mol Biol 845: 277–287.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2012 Číslo 8
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Invariant NKT Cells: Regulation and Function during Viral Infection
- Host Defense and Tolerance: Unique Challenges in the Placenta
- Nonhuman Primate Models for HIV Cure Research
- Exon Level Transcriptomic Profiling of HIV-1-Infected CD4 T Cells Reveals Virus-Induced Genes and Host Environment Favorable for Viral Replication