Structural and Biochemical Basis for Development of Influenza Virus Inhibitors Targeting the PA Endonuclease
Emerging influenza viruses are a serious threat to human health because of their pandemic potential. A promising target for the development of novel anti-influenza therapeutics is the PA protein, whose endonuclease activity is essential for viral replication. Translation of viral mRNAs by the host ribosome requires mRNA capping for recognition and binding, and the necessary mRNA caps are cleaved or “snatched” from host pre-mRNAs by the PA endonuclease. The structure-based development of inhibitors that target PA endonuclease is now possible with the recent crystal structure of the PA catalytic domain. In this study, we sought to understand the molecular mechanism of inhibition by several compounds that are known or predicted to block endonuclease-dependent polymerase activity. Using an in vitro endonuclease activity assay, we show that these compounds block the enzymatic activity of the isolated PA endonuclease domain. Using X-ray crystallography, we show how these inhibitors coordinate the two-metal endonuclease active site and engage the active site residues. Two structures also reveal an induced-fit mode of inhibitor binding. The structures allow a molecular understanding of the structure-activity relationship of several known influenza inhibitors and the mechanism of drug resistance by a PA mutation. Taken together, our data reveal new strategies for structure-based design and optimization of PA endonuclease inhibitors.
Vyšlo v časopise:
Structural and Biochemical Basis for Development of Influenza Virus Inhibitors Targeting the PA Endonuclease. PLoS Pathog 8(8): e32767. doi:10.1371/journal.ppat.1002830
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1002830
Souhrn
Emerging influenza viruses are a serious threat to human health because of their pandemic potential. A promising target for the development of novel anti-influenza therapeutics is the PA protein, whose endonuclease activity is essential for viral replication. Translation of viral mRNAs by the host ribosome requires mRNA capping for recognition and binding, and the necessary mRNA caps are cleaved or “snatched” from host pre-mRNAs by the PA endonuclease. The structure-based development of inhibitors that target PA endonuclease is now possible with the recent crystal structure of the PA catalytic domain. In this study, we sought to understand the molecular mechanism of inhibition by several compounds that are known or predicted to block endonuclease-dependent polymerase activity. Using an in vitro endonuclease activity assay, we show that these compounds block the enzymatic activity of the isolated PA endonuclease domain. Using X-ray crystallography, we show how these inhibitors coordinate the two-metal endonuclease active site and engage the active site residues. Two structures also reveal an induced-fit mode of inhibitor binding. The structures allow a molecular understanding of the structure-activity relationship of several known influenza inhibitors and the mechanism of drug resistance by a PA mutation. Taken together, our data reveal new strategies for structure-based design and optimization of PA endonuclease inhibitors.
Zdroje
1. ReidAHTaubenbergerJKFanningTG 2001 The 1918 Spanish influenza: integrating history and biology. Microbes Infect 3 81 87
2. GartenRJDavisCTRussellCAShuBLindstromS 2009 Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325 197 201
3. WHO 2012 Avian influenza in humans. Available: http://www.who.int/csr/disease/avian_influenza/
4. ImaiMWatanabeTHattaMDasSCOzawaM 2012 Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486 420 8
5. HerfstSSchrauwenEJALinsterMChutinimitkulSde WitE 2012 Airborne Transmission of Influenza A/H5N1 Virus Between Ferrets. Science 336 1534 1541
6. StiverG 2003 The treatment of influenza with antiviral drugs. CMAJ 168 49 56
7. WHO 2012 Global Influenza Programme. Available: http://www.who.int/influenza/en/
8. HagenMChungTDButcherJAKrystalM 1994 Recombinant influenza virus polymerase: requirement of both 5′ and 3′ viral ends for endonuclease activity. J Virol 68 1509 1515
9. TileyLSHagenMMatthewsJTKrystalM 1994 Sequence-specific binding of the influenza virus RNA polymerase to sequences located at the 5′ ends of the viral RNAs. J Virol 68 5108 5116
10. GuilligayDTarendeauFResa-InfantePColomaRCrepinT 2008 The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat Struct Mol Biol 15 500 506
11. LiMLRaoPKrugRM 2001 The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits. Embo J 20 2078 2086
12. HaraKSchmidtFICrowMBrownleeGG 2006 Amino acid residues in the N-terminal region of the PA subunit of influenza A virus RNA polymerase play a critical role in protein stability, endonuclease activity, cap binding, and virion RNA promoter binding. J Virol 80 7789 7798
13. BiswasSKNayakDP 1994 Mutational analysis of the conserved motifs of influenza A virus polymerase basic protein 1. J Virol 68 1819 1826
14. PlotchSJBouloyMUlmanenIKrugRM 1981 A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23 847 858
15. TomassiniJSelnickHDaviesMEArmstrongMEBaldwinJ 1994 Inhibition of cap (m7GpppXm)-dependent endonuclease of influenza virus by 4-substituted 2,4-dioxobutanoic acid compounds. Antimicrob Agents Chemother 38 2827 2837
16. DiasABouvierDCrepinTMcCarthyAAHartDJ 2009 The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 458 914 918
17. YuanPBartlamMLouZChenSZhouJ 2009 Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site. Nature 458 909 913
18. NakazawaMKadowakiSEWatanabeIKadowakiYTakeiM 2008 PA subunit of RNA polymerase as a promising target for anti-influenza virus agents. Antiviral Res 78 194 201
19. CrepinTDiasAPalenciaASwaleCCusackS 2010 Mutational and metal binding analysis of the endonuclease domain of the influenza virus polymerase PA subunit. J Virol 84 9096 9104
20. DoanLHandaBRobertsNAKlumppK 1999 Metal ion catalysis of RNA cleavage by the influenza virus endonuclease. Biochemistry 38 5612 5619
21. HeXZhouJBartlamMZhangRMaJ 2008 Crystal structure of the polymerase PA(C)-PB1(N) complex from an avian influenza H5N1 virus. Nature 454 1123 1126
22. ObayashiEYoshidaHKawaiFShibayamaNKawaguchiA 2008 The structural basis for an essential subunit interaction in influenza virus RNA polymerase. Nature 454 1127 1131
23. SugiyamaKObayashiEKawaguchiASuzukiYTameJR 2009 Structural insight into the essential PB1-PB2 subunit contact of the influenza virus RNA polymerase. Embo J 28 1803 1811
24. TarendeauFCrepinTGuilligayDRuigrokRWCusackS 2008 Host determinant residue lysine 627 lies on the surface of a discrete, folded domain of influenza virus polymerase PB2 subunit. PLoS Pathog 4 e1000136
25. ZhaoCLouZGuoYMaMChenY 2009 Nucleoside monophosphate complex structures of the endonuclease domain from the influenza virus polymerase PA subunit reveal the substrate binding site inside the catalytic center. J Virol 83 9024 9030
26. HastingsJCSelnickHWolanskiBTomassiniJE 1996 Anti-influenza virus activities of 4-substituted 2,4-dioxobutanoic acid inhibitors. Antimicrob Agents Chemother 40 1304 1307
27. IwaiYMurakamiKGomiYHashimotoTAsakawaY 2011 Anti-influenza activity of marchantins, macrocyclic bisbibenzyls contained in liverworts. PLoS One 6 e19825
28. IwaiYTakahashiHHatakeyamaDMotoshimaKIshikawaM 2010 Anti-influenza activity of phenethylphenylphthalimide analogs derived from thalidomide. Bioorg Med Chem 18 5379 5390
29. ParkesKEErmertPFasslerJIvesJMartinJA 2003 Use of a pharmacophore model to discover a new class of influenza endonuclease inhibitors. J Med Chem 46 1153 1164
30. TomassiniJEDaviesMEHastingsJCLinghamRMojenaM 1996 A novel antiviral agent which inhibits the endonuclease of influenza viruses. Antimicrob Agents Chemother 40 1189 1193
31. KowalinskiEZubietaCWolkerstorferASzolarOHJRuigrokRWH 2012 Structural analysis of specific metal chelating inhibitor binding to the endonuclease domain of influenza pH1N1 (2009) polymerase. PLoS Pathog In press
32. RegueraJWeberFCusackS 2010 Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription. PLoS Pathog 6 e1001101
33. YangWLeeJYNowotnyM 2006 Making and breaking nucleic acids: two-Mg2+-ion catalysis and substrate specificity. Mol Cell 22 5 13
34. SummaVPetrocchiABonelliFCrescenziBDonghiM 2008 Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. J Med Chem 51 5843 5855
35. HareSGuptaSSValkovEEngelmanACherepanovP 2010 Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 464 232 236
36. HareSVosAMClaytonRFThuringJWCummingsMD 2010 Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proc Natl Acad Sci U S A 107 20057 20062
37. BoydVAMasonJHanumeshPPriceJRussellCJ 2009 2-Substituted-4,5-dihydroxypyrimidine-6-carboxamide antiviral targeted libraries. J Comb Chem 11 1100 1104
38. KuzuharaTIwaiYTakahashiHHatakeyamaDEchigoN 2009 Green tea catechins inhibit the endonuclease activity of influenza A virus RNA polymerase. PLoS Curr 1 RRN1052
39. SongJMLeeKHSeongBL 2005 Antiviral effect of catechins in green tea on influenza virus. Antiviral Res 68 66 74
40. BaughmanBMSlavishPJDuboisRMBoydVAWhiteSW 2012 Identification of Influenza Endonuclease Inhibitors via a Novel Fluorescence Polarization Assay. ACS Chem Biol 7 526 34
41. KirschbergTABalakrishnanMSquiresNHBarnesTBrendzaKM 2009 RNase H active site inhibitors of human immunodeficiency virus type 1 reverse transcriptase: design, biochemical activity, and structural information. J Med Chem 52 5781 5784
42. LansdonEBLiuQLeavittSABalakrishnanMPerryJK 2011 Structural and binding analysis of pyrimidinol carboxylic acid and N-hydroxy quinazolinedione HIV-1 RNase H inhibitors. Antimicrob Agents Chemother 55 2905 2915
43. FreireEWaksmanG 2005 A Thermodynamic Guide to Affinity Optimization of Drug Candidates: Proteomics and Protein-Protein Interactions. Springer US 291 307
44. HamelbergDMcCammonJA 2004 Standard free energy of releasing a localized water molecule from the binding pockets of proteins: double-decoupling method. J Am Chem Soc 126 7683 7689
45. MichelJTirado-RivesJJorgensenWL 2009 Energetics of displacing water molecules from protein binding sites: consequences for ligand optimization. J Am Chem Soc 131 15403 15411
46. LamPYJadhavPKEyermannCJHodgeCNRuY 1994 Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science 263 380 384
47. NowotnyMGaidamakovSACrouchRJYangW 2005 Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell 121 1005 1016
48. NowotnyMYangW 2006 Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release. Embo J 25 1924 1933
49. MorinBCoutardBLelkeMFerronFKerberR 2010 The N-terminal domain of the arenavirus L protein is an RNA endonuclease essential in mRNA transcription. PLoS Pathog 6 e1001038
50. BirchAJSalahud-DinMSmithDCC 1966 The synthesis of (+/−)-xanthorrhoein. J Chem Soc C: Organic 523 527
51. KochUAttenniBMalanconaSColarussoSConteI 2006 2-(2-Thienyl)-5,6-dihydroxy-4-carboxypyrimidines as inhibitors of the hepatitis C virus NS5B polymerase: discovery, SAR, modeling, and mutagenesis. J Med Chem 49 1693 1705
52. OtwinowskiZMinorWCarterCharlesWJr 1997 Processing of X-ray diffraction data collected in oscillation mode Methods Enzymol Academic Press 307 326
53. McCoyAJGrosse-KunstleveRWStoroniLCReadRJ 2005 Likelihood-enhanced fast translation functions. Acta Crystallogr D Biol Crystallogr 61 458 464
54. AdamsPDAfoninePVBunkocziGChenVBDavisIW 2010 PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66 213 221
55. EmsleyPCowtanK 2004 Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60 2126 2132
56. MurshudovGNVaginAADodsonEJ 1997 Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53 240 255
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2012 Číslo 8
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- Invariant NKT Cells: Regulation and Function during Viral Infection
- Host Defense and Tolerance: Unique Challenges in the Placenta
- Nonhuman Primate Models for HIV Cure Research
- Exon Level Transcriptomic Profiling of HIV-1-Infected CD4 T Cells Reveals Virus-Induced Genes and Host Environment Favorable for Viral Replication