Transcription of a -acting, Noncoding, Small RNA Is Required for Pilin Antigenic Variation in
The strict human pathogen Neisseria gonorrhoeae can utilize homologous recombination to generate antigenic variability in targets of immune surveillance. To evade the host immune response, N. gonorrhoeae promotes high frequency gene conversion events between many silent pilin copies and the expressed pilin locus (pilE), resulting in the production of variant pilin proteins. Previously, we identified a guanine quartet (G4) structure localized near pilE that is required for the homologous recombination reactions leading to pilin antigenic variation (Av). In this work, we demonstrate that inactivating the promoter of a small non-coding RNA (sRNA) that initiates within the G4 forming sequence blocks pilin Av. The sRNA promoter is conserved in all sequenced gonococcal strains, and mutations in the predicted transcript downstream of the G4 forming sequence do not alter pilin Av. A mutation that produces a stronger promoter or substitution of the pilE G4-associated sRNA promoter with a phage promoter (when the phage polymerase was expressed) produced wild-type levels of pilin Av. Altering the direction and orientation of the pilE G4-associated sRNA disrupted pilin Av. In addition, expression of the sRNA at a distal site on the gonococcal chromosome in the context of a promoter mutant did not support pilin Av. We conclude that the DNA containing the G-rich sequence can only form the G4 structure during transcription of this sRNA, thus providing a unique molecular step for the initiation of programmed recombination events.
Vyšlo v časopise:
Transcription of a -acting, Noncoding, Small RNA Is Required for Pilin Antigenic Variation in. PLoS Pathog 9(1): e32767. doi:10.1371/journal.ppat.1003074
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1003074
Souhrn
The strict human pathogen Neisseria gonorrhoeae can utilize homologous recombination to generate antigenic variability in targets of immune surveillance. To evade the host immune response, N. gonorrhoeae promotes high frequency gene conversion events between many silent pilin copies and the expressed pilin locus (pilE), resulting in the production of variant pilin proteins. Previously, we identified a guanine quartet (G4) structure localized near pilE that is required for the homologous recombination reactions leading to pilin antigenic variation (Av). In this work, we demonstrate that inactivating the promoter of a small non-coding RNA (sRNA) that initiates within the G4 forming sequence blocks pilin Av. The sRNA promoter is conserved in all sequenced gonococcal strains, and mutations in the predicted transcript downstream of the G4 forming sequence do not alter pilin Av. A mutation that produces a stronger promoter or substitution of the pilE G4-associated sRNA promoter with a phage promoter (when the phage polymerase was expressed) produced wild-type levels of pilin Av. Altering the direction and orientation of the pilE G4-associated sRNA disrupted pilin Av. In addition, expression of the sRNA at a distal site on the gonococcal chromosome in the context of a promoter mutant did not support pilin Av. We conclude that the DNA containing the G-rich sequence can only form the G4 structure during transcription of this sRNA, thus providing a unique molecular step for the initiation of programmed recombination events.
Zdroje
1. EdwardsJL, ApicellaMA (2004) The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin Microbiol Rev 17: 965–981, table of contents.
2. CohenMS, CannonJG (1999) Human experimentation with Neisseria gonorrhoeae: progress and goals. J Infect Dis 179 Suppl 2: S375–379.
3. ParkHS, WolfgangM, van PuttenJP, DorwardD, HayesSF, et al. (2001) Structural alterations in a type IV pilus subunit protein result in concurrent defects in multicellular behaviour and adherence to host tissue. Mol Microbiol 42: 293–307.
4. RudelT, van PuttenJP, GibbsCP, HaasR, MeyerTF (1992) Interaction of two variable proteins (PilE and PilC) required for pilus-mediated adherence of Neisseria gonorrhoeae to human epithelial cells. Mol Microbiol 6: 3439–3450.
5. WolfgangM, LauerP, ParkHS, BrossayL, HebertJ, et al. (1998) PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Mol Microbiol 29: 321–330.
6. DanaherRJ, LevinJC, ArkingD, BurchCL, SandlinR, et al. (1995) Genetic basis of Neisseria gonorrhoeae lipooligosaccharide antigenic variation. J Bacteriol 177: 7275–7279.
7. HagblomP, SegalE, BillyardE, SoM (1985) Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae. Nature 315: 156–158.
8. JenningsMP, HoodDW, PeakIR, VirjiM, MoxonER (1995) Molecular analysis of a locus for the biosynthesis and phase-variable expression of the lacto-N-neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis. Mol Microbiol 18: 729–740.
9. SternA, BrownM, NickelP, MeyerTF (1986) Opacity genes in Neisseria gonorrhoeae: control of phase and antigenic variation. Cell 47: 61–71.
10. BoslegoJW, TramontEC, ChungRC, McChesneyDG, CiakJ, et al. (1991) Efficacy trial of a parenteral gonococcal pilus vaccine in men. Vaccine 9: 154–162.
11. CahoonLA, SeifertHS (2011) Focusing homologous recombination: pilin antigenic variation in the pathogenic Neisseria. Mol Microbiol 81: 1136–1143.
12. HamrickTS, DempseyJA, CohenMS, CannonJG (2001) Antigenic variation of gonococcal pilin expression in vivo: analysis of the strain FA1090 pilin repertoire and identification of the pilS gene copies recombining with pilE during experimental human infection. Microbiology 147: 839–849.
13. VinkC, RudenkoG, SeifertHS (2011) Microbial antigenic variation mediated by homologous DNA recombination. FEMS Microbiol Rev
14. SwansonJ, BergstromS, BoslegoJ, KoomeyM (1987) Gene conversion accounts for pilin structural changes and for reversible piliation “phase” changes in gonococci. Antonie Van Leeuwenhoek 53: 441–446.
15. KlineKA, CrissAK, WallaceA, SeifertHS (2007) Transposon mutagenesis identifies sites upstream of the Neisseria gonorrhoeae pilE gene that modulate pilin antigenic variation. J Bacteriol 189: 3462–3470.
16. SechmanEV, RohrerMS, SeifertHS (2005) A genetic screen identifies genes and sites involved in pilin antigenic variation in Neisseria gonorrhoeae. Mol Microbiol 57: 468–483.
17. CahoonLA, SeifertHS (2009) An alternative DNA structure is necessary for pilin antigenic variation in Neisseria gonorrhoeae. Science 325: 764–767.
18. RenJ, ChairesJB (1999) Sequence and structural selectivity of nucleic acid binding ligands. Biochemistry 38: 16067–16075.
19. MunchR, HillerK, GroteA, ScheerM, KleinJ, et al. (2005) Virtual Footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes. Bioinformatics 21: 4187–4189.
20. ShultzabergerRK, ChenZ, LewisKA, SchneiderTD (2007) Anatomy of Escherichia coli sigma70 promoters. Nucleic Acids Res 35: 771–788.
21. AhoEL, BottenJW, HallRJ, LarsonMK, NessJK (1997) Characterization of a class II pilin expression locus from Neisseria meningitidis: evidence for increased diversity among pilin genes in pathogenic Neisseria species. Infect Immun 65: 2613–2620.
22. HelmRA, SeifertHS (2010) Frequency and rate of pilin antigenic variation of Neisseria meningitidis. J Bacteriol 192: 3822–3823.
23. ArgamanL, HershbergR, VogelJ, BejeranoG, WagnerEG, et al. (2001) Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr Biol 11: 941–950.
24. KoomeyM, GotschlichEC, RobbinsK, BergstromS, SwansonJ (1987) Effects of recA mutations on pilus antigenic variation and phase transitions in Neisseria gonorrhoeae. Genetics 117: 391–398.
25. SechmanEV, KlineKA, SeifertHS (2006) Loss of both Holliday junction processing pathways is synthetically lethal in the presence of gonococcal pilin antigenic variation. Mol Microbiol 61: 185–193.
26. MehrIJ, SeifertHS (1998) Differential roles of homologous recombination pathways in Neisseria gonorrhoeae pilin antigenic variation, DNA transformation and DNA repair. Mol Microbiol 30: 697–710.
27. Kuryavyi V, Cahoon LA, Seifert HS, Patel DJ, (2012) RecA-Binding pilE G4 Sequence Essential for Pilin Antigenic Variation Forms Monomeric and 5′ End Stacked Dimeric Parallel G-Quadruplexes. Structure In Press.
28. GeorgJ, HessWR (2011) cis-antisense RNA, another level of gene regulation in bacteria. Microbiol Mol Biol Rev 75: 286–300.
29. StorzG, VogelJ, WassarmanKM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43: 880–891.
30. AndradeJM, PobreV, MatosAM, ArraianoCM (2012) The crucial role of PNPase in the degradation of small RNAs that are not associated with Hfq. RNA 18: 844–855.
31. WatersLS, StorzG (2009) Regulatory RNAs in bacteria. Cell 136: 615–628.
32. DietrichM, MunkeR, GottschaldM, ZiskaE, BoettcherJP, et al. (2009) The effect of hfq on global gene expression and virulence in Neisseria gonorrhoeae. FEBS J 276: 5507–5520.
33. MaizelsN (2005) Immunoglobulin gene diversification. Annu Rev Genet 39: 23–46.
34. DuquetteML, HandaP, VincentJA, TaylorAF, MaizelsN (2004) Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev 18: 1618–1629.
35. AguileraA (2002) The connection between transcription and genomic instability. Embo J 21: 195–201.
36. LippsHJ, RhodesD (2009) G-quadruplex structures: in vivo evidence and function. Trends Cell Biol 19: 414–422.
37. GonzalezV, HurleyLH (2010) The c-MYC NHE III(1): function and regulation. Annu Rev Pharmacol Toxicol 50: 111–129.
38. ZhaoJ, BacollaA, WangG, VasquezKM (2010) Non-B DNA structure-induced genetic instability and evolution. Cell Mol Life Sci 67: 43–62.
39. MillevoiS, MoineH, VagnerS (2012) G-quadruplexes in RNA biology. Wiley Interdiscip Rev RNA
40. KangSG, HendersonE (2002) Identification of non-telomeric G4-DNA binding proteins in human, E. coli, yeast, and Arabidopsis. Mol Cells 14: 404–410.
41. MatillaI, AlfonsoC, RivasG, BoltEL, de la CruzF, et al. (2010) The conjugative DNA translocase TrwB is a structure-specific DNA-binding protein. J Biol Chem 285: 17537–17544.
42. WuX, MaizelsN (2001) Substrate-specific inhibition of RecQ helicase. Nucleic Acids Res 29: 1765–1771.
43. RawalP, KummarasettiVB, RavindranJ, KumarN, HalderK, et al. (2006) Genome-wide prediction of G4 DNA as regulatory motifs: role in Escherichia coli global regulation. Genome Res 16: 644–655.
44. StohlEA, SeifertHS (2001) The recX gene potentiates homologous recombination in Neisseria gonorrhoeae. Mol Microbiol 40: 1301–1310.
45. MehrIJ, LongCD, SerkinCD, SeifertHS (2000) A homologue of the recombination-dependent growth gene, rdgC, is involved in gonococcal pilin antigenic variation. Genetics 154: 523–532.
46. SerkinCD, SeifertHS (2000) Iron availability regulates DNA recombination in Neisseria gonorrhoeae. Mol Microbiol 37: 1075–1086.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2013 Číslo 1
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Biosafety Level-4 Laboratories in Europe: Opportunities for Public Health, Diagnostics, and Research
- Loss and Retention of RNA Interference in Fungi and Parasites
- Innate Sensing of Chitin and Chitosan
- Make It, Take It, or Leave It: Heme Metabolism of Parasites