#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

-32 Ligand/Receptor Silencing Phenocopy Faster Plant Pathogenic Nematodes


Restrictions on nematicide usage underscore the need for novel control strategies for plant pathogenic nematodes such as Globodera pallida (potato cyst nematode) that impose a significant economic burden on plant cultivation activities. The nematode neuropeptide signalling system is an attractive resource for novel control targets as it plays a critical role in sensory and motor functions. The FMRFamide-like peptides (FLPs) form the largest and most diverse family of neuropeptides in invertebrates, and are structurally conserved across nematode species, highlighting the utility of the FLPergic system as a broad-spectrum control target. flp-32 is expressed widely across nematode species. This study investigates the role of flp-32 in G. pallida and shows that: (i) Gp-flp-32 encodes the peptide AMRNALVRFamide; (ii) Gp-flp-32 is expressed in the brain and ventral nerve cord of G. pallida; (iii) migration rate increases in Gp-flp-32-silenced worms; (iv) the ability of G. pallida to infect potato plant root systems is enhanced in Gp-flp-32-silenced worms; (v) a novel putative Gp-flp-32 receptor (Gp-flp-32R) is expressed in G. pallida; and, (vi) Gp-flp-32R-silenced worms also display an increase in migration rate. This work demonstrates that Gp-flp-32 plays an intrinsic role in the modulation of locomotory behaviour in G. pallida and putatively interacts with at least one novel G-protein coupled receptor (Gp-flp-32R). This is the first functional characterisation of a parasitic nematode FLP-GPCR.


Vyšlo v časopise: -32 Ligand/Receptor Silencing Phenocopy Faster Plant Pathogenic Nematodes. PLoS Pathog 9(2): e32767. doi:10.1371/journal.ppat.1003169
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003169

Souhrn

Restrictions on nematicide usage underscore the need for novel control strategies for plant pathogenic nematodes such as Globodera pallida (potato cyst nematode) that impose a significant economic burden on plant cultivation activities. The nematode neuropeptide signalling system is an attractive resource for novel control targets as it plays a critical role in sensory and motor functions. The FMRFamide-like peptides (FLPs) form the largest and most diverse family of neuropeptides in invertebrates, and are structurally conserved across nematode species, highlighting the utility of the FLPergic system as a broad-spectrum control target. flp-32 is expressed widely across nematode species. This study investigates the role of flp-32 in G. pallida and shows that: (i) Gp-flp-32 encodes the peptide AMRNALVRFamide; (ii) Gp-flp-32 is expressed in the brain and ventral nerve cord of G. pallida; (iii) migration rate increases in Gp-flp-32-silenced worms; (iv) the ability of G. pallida to infect potato plant root systems is enhanced in Gp-flp-32-silenced worms; (v) a novel putative Gp-flp-32 receptor (Gp-flp-32R) is expressed in G. pallida; and, (vi) Gp-flp-32R-silenced worms also display an increase in migration rate. This work demonstrates that Gp-flp-32 plays an intrinsic role in the modulation of locomotory behaviour in G. pallida and putatively interacts with at least one novel G-protein coupled receptor (Gp-flp-32R). This is the first functional characterisation of a parasitic nematode FLP-GPCR.


Zdroje

1. McCarter JP. (2009) Molecular approaches toward resistance to plant parasitic nematodes. In: Berg RH, Taylor CG, editors. Cell Biology of Plant Nematode Parasitism. Springer. pp. 83.

2. KaplanRM (2004) Drug resistance in nematodes of veterinary importance: A status report. Trends Parasitol 20 (10) 477–481.

3. McVeighP, AtkinsonLE, MarksNJ, MousleyA, DalzellJJ, et al. (2012) Parasite neuropeptide biology: Seeding rational drug target selection? Int J Parasitol 2: 76.

4. MauleAG, GearyTG, BowmanJW, MarksNJ, BlairKL, et al. (1995) Inhibitory effects of nematode FMRFamide-related peptides (FaRPs) on muscle strips from Ascaris suum. Invert Neurosci 1 (3) 255–265.

5. MauleAG, MousleyA, MarksNJ, DayTA, ThompsonDP, et al. (2002) Neuropeptide signaling systems - potential drug targets for parasite and pest control. Curr Top Med Chem 2 (7) 733–758.

6. MoffettCL, BeckettAM, MousleyA, GearyTG, MarksNJ, et al. (2003) The ovijector of Ascaris suum: Multiple response types revealed by Caenorhabditis elegans FMRFamide-related peptides. Int J Parasitol 33 (8) 859–876.

7. KimberMJ, McKinneyS, McMasterS, DayTA, FlemingCC, et al. (2007) Flp gene disruption in a parasitic nematode reveals motor dysfunction and unusual neuronal sensitivity to RNA interference. FASEB J 21 (4) 1233–1243.

8. MarksNJ, MauleAG (2010) Neuropeptides in helminths: Occurrence and distribution. Adv Exp Med Biol 692: 49–77.

9. MousleyA, NovozhilovaE, KimberMJ, DayTA (2010) Neuropeptide physiology in helminths. Adv Exp Med Biol 692: 78–97.

10. McVeighP, GearyTG, MarksNJ, MauleAG (2006) The FLP-side of nematodes. Trends Parasitol 22 (8) 385–396.

11. McVeighP, LeechS, MairGR, MarksNJ, GearyTG, et al. (2005) Analysis of FMRFamide-like peptide (FLP) diversity in phylum nematoda. Int J Parasitol 35 (10) 1043–1060.

12. LiC, KimK (2008) Neuropeptides. WormBook 1–36.

13. MertensI, VandingenenA, MeeusenT, JanssenT, LuytenW, et al. (2004) Functional characterization of the putative orphan neuropeptide G-protein coupled receptor C26F1.6 in Caenorhabditis elegans. FEBS Lett 573 (1–3) 55–60.

14. RingstadN, HorvitzHR (2008) FMRFamide neuropeptides and acetylcholine synergistically inhibit egg-laying by C. elegans. Nat Neurosci 11 (10) 1168–1176.

15. MuhlfeldS, Schmitt-WredeHP, HarderA, WunderlichF (2009) FMRFamide-like neuropeptides as putative ligands of the latrophilin-like HC110-R from Haemonchus contortus. Mol Biochem Parasitol 164 (2) 162–164.

16. PetersenTN, BrunakS, von HeijneG, NielsenH (2011) SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat Methods 8 (10) 785–786.

17. KimberMJ, FlemingCC, PriorA, JonesJT, HaltonDW, et al. (2002) Localisation of Globodera pallida FMRFamide-related peptide encoding genes using in situ hybridisation. Int J Parasitol 32 (9) 1095–1105.

18. KimK, LiC (2004) Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. J Comp Neurol 475 (4) 540–550.

19. WhiteJG, AlbertsonDG, AnnessMA (1978) Connectivity changes in a class of motorneurone during the development of a nematode. Nature 271 (5647) 764–766.

20. WalthallWW, LiL, PlunkettJA, HsuCY (1993) Changing synaptic specificities in the nervous system of Caenorhabditis elegans: Differentiation of the DD motorneurons. J Neurobiol 24 (12) 1589–1599.

21. DalzellJJ, McMasterS, FlemingCC, MauleAG (2010) Short interfering RNA-mediated gene silencing in Globodera pallida and Meloidogyne incognita infective stage juveniles. Int J Parasitol 40 (1) 91–100.

22. Driscoll M, Kaplan J. (1997) Mechanotransduction. In: Riddle DL, Blumenthal T, Meyer BJ, editors. C. elegans II. 2nd edition. NY: Cold spring Harbor Laboratory Press.

23. McIntireSL, JorgensenE, HorvitzHR (1993) Genes required for GABA function in Caenorhabditis elegans. Nature 364 (6435) 334–337.

24. CrollNA (1972) Energy utilization of infective Ancylostoma tubaeforme larvae. Parasitology 64 (3) 355–368.

25. PatelMN, StolinskiM, WrightDJ (1997) Neutral lipids and the assessment of infectivity in entomopathogenic nematodes: Observations on four Steinernema species. Parasitology 114 (Pt 5) 489–496.

26. KeatingCD, KriekN, DanielsM, AshcroftNR, HopperNA, et al. (2003) Whole-genome analysis of 60 G protein-coupled receptors in Caenorhabditis elegans by gene knockout with RNAi. Curr Biol 13 (19) 1715–1720.

27. ZhaoS, FernaldRD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12 (8) 1047–1064.

28. PfafflMW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29 (9) e45.

29. BybdDW, KirkpatrickT, BarkerKR (1983) An improved technique for clearing and staining plant tissues for detection of nematodes. J Nematol 15 (1) 142–143.

30. SanchezJA, PierceKE, RiceJE, WanghLJ (2004) Linear-after-the-exponential (LATE)-PCR: An advanced method of asymmetric PCR and its uses in quantitative real-time analysis. Proc Natl Acad Sci U S A 101 (7) 1933–1938.

31. CoonsAH, LeducEH, ConnollyJM (1955) Studies on antibody production. I. A method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. J Exp Med 102 (1) 49–60.

32. KimberMJ, FlemingCC, BjoursonAJ, HaltonDW, MauleAG (2001) FMRFamide-related peptides in potato cyst nematodes. Mol Biochem Parasitol 116 (2) 199–208.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2013 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#