Structural Determinants for Activity and Specificity of the Bacterial Toxin LlpA
Lectin-like bacteriotoxic proteins, identified in several plant-associated bacteria, are able to selectively kill closely related species, including several phytopathogens, such as Pseudomonas syringae and Xanthomonas species, but so far their mode of action remains unrevealed. The crystal structure of LlpABW, the prototype lectin-like bacteriocin from Pseudomonas putida, reveals an architecture of two monocot mannose-binding lectin (MMBL) domains and a C-terminal β-hairpin extension. The C-terminal MMBL domain (C-domain) adopts a fold very similar to MMBL domains from plant lectins and contains a binding site for mannose and oligomannosides. Mutational analysis indicates that an intact sugar-binding pocket in this domain is crucial for bactericidal activity. The N-terminal MMBL domain (N-domain) adopts the same fold but is structurally more divergent and lacks a functional mannose-binding site. Differential activity of engineered N/C-domain chimers derived from two LlpA homologues with different killing spectra, disclosed that the N-domain determines target specificity. Apparently this bacteriocin is assembled from two structurally similar domains that evolved separately towards dedicated functions in target recognition and bacteriotoxicity.
Vyšlo v časopise:
Structural Determinants for Activity and Specificity of the Bacterial Toxin LlpA. PLoS Pathog 9(2): e32767. doi:10.1371/journal.ppat.1003199
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1003199
Souhrn
Lectin-like bacteriotoxic proteins, identified in several plant-associated bacteria, are able to selectively kill closely related species, including several phytopathogens, such as Pseudomonas syringae and Xanthomonas species, but so far their mode of action remains unrevealed. The crystal structure of LlpABW, the prototype lectin-like bacteriocin from Pseudomonas putida, reveals an architecture of two monocot mannose-binding lectin (MMBL) domains and a C-terminal β-hairpin extension. The C-terminal MMBL domain (C-domain) adopts a fold very similar to MMBL domains from plant lectins and contains a binding site for mannose and oligomannosides. Mutational analysis indicates that an intact sugar-binding pocket in this domain is crucial for bactericidal activity. The N-terminal MMBL domain (N-domain) adopts the same fold but is structurally more divergent and lacks a functional mannose-binding site. Differential activity of engineered N/C-domain chimers derived from two LlpA homologues with different killing spectra, disclosed that the N-domain determines target specificity. Apparently this bacteriocin is assembled from two structurally similar domains that evolved separately towards dedicated functions in target recognition and bacteriotoxicity.
Zdroje
1. Frey-KlettP, BurlinsonP, DeveauA, BarretM, TarkkaM, et al. (2011) Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75: 583–609.
2. MelaF, FritscheK, de BoerW, van VeenJA, de GraaffLH, et al. (2011) Dual transcriptional profiling of a bacterial/fungal confrontation: Collimonas fungivorans versus Aspergillus niger. ISME J 5: 1494–1504.
3. GarbevaP, SilbyMW, RaaijmakersJM, LevySB, de BoerW (2011) Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0-1 to phylogenetically different bacterial competitors. ISME J 5: 973–985.
4. ShankEA, Klepac-CerajV, Collado-TorresL, PowersGE, LosickR, et al. (2011) Interspecies interactions that result in Bacillus subtilis forming biofilms are mediated mainly by members of its own genus. Proc Natl Acad Sci U S A 108: E1236–E1243.
5. RosenthalAZ, MatsonEG, EldarA, LeadbetterJR (2011) RNA-seq reveals cooperative metabolic interactions between two termite-gut spirochete species in co-culture. ISME J 5: 1133–1142.
6. HibbingME, FuquaC, ParsekMR, PetersonSB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8: 15–25.
7. AokiSK, DinerEJ, de RoodenbekeCT, BurgessBR, PooleSJ, et al. (2010) A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature 468: 439–442.
8. PooleSJ, DinerEJ, AokiSK, BraatenBA, t'Kint de RoodenbekeC, et al. (2011) Identification of functional toxin/immunity genes linked to contact-dependent growth inhibition (CDI) and rearrangement hotspot (Rhs) systems. PLoS Genet 7: e1002217.
9. RussellAB, HoodRD, BuiNK, LeRouxM, VollmerW, et al. (2011) Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475: 343–347.
10. Michel-BriandY, BaysseC (2002) The pyocins of Pseudomonas aeruginosa. Biochimie 84: 499–510.
11. NakayamaK, TakashimaK, IshiharaH, ShinomiyaT, KageyamaM, et al. (2000) The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol Microbiol 38: 213–231.
12. WilliamsSR, GebhartD, MartinDW, SchollD (2008) Retargeting R-type pyocins to generate novel bactericidal protein complexes. Appl Environ Microbiol 74: 3868–3876.
13. FischerS, GodinoA, QuesadaJM, CorderoP, JofréE, et al. (2012) Characterization of a phage-like pyocin from the plant growth-promoting rhizobacterium Pseudomonas fluorescens SF4c. Microbiology 158: 1493–1503.
14. KöhlerT, DonnerV, van DeldenC (2010) Lipopolysaccharide as shield and receptor for R-pyocin-mediated killing in Pseudomonas aeruginosa. J Bacteriol 192: 1921–1928.
15. CascalesE, BuchananSK, DuchéD, KleanthousC, LloubèsR, et al. (2007) Colicin biology. Microbiol Mol Biol Rev 71: 158–229.
16. DenayerS, MatthijsS, CornelisP (2007) Pyocin S2 (Sa) kills Pseudomonas aeruginosa strains via the FpvA type I ferripyoverdine receptor. J Bacteriol 189: 7663–7668.
17. ElfarashA, WeiQ, CornelisP (2012) The soluble pyocins S2 and S4 from Pseudomonas aeruginosa bind to the same FpvAI receptor. Microbiologyopen 1: 268–275.
18. LingH, SaeidiN, RasoulihaBH, ChangMW (2010) A predicted S-type pyocin shows a bactericidal activity against clinical Pseudomonas aeruginosa isolates through membrane damage. FEBS Lett 584: 3354–3358.
19. BarreteauH, TiouajniM, GrailleM, JosseaumeN, BouhssA, et al. (2012) Functional and structural characterization of PaeM, a colicin M-like bacteriocin produced by Pseudomonas aeruginosa. J Biol Chem 287: 37395–37405.
20. GrinterR, RoszakAW, CogdellRJ, MilnerJJ, WalkerD (2012) The crystal structure of the lipid II-degrading bacteriocin syringacin M suggests unexpected evolutionary relationships between colicin M-like bacteriocins. J Biol Chem 287: 38876–38888.
21. ParretAHA, SchoofsG, ProostP, De MotR (2003) Plant lectin-like bacteriocin from a rhizosphere-colonizing Pseudomonas isolate. J Bacteriol 185: 897–908.
22. ParretAHA, TemmermanK, De MotR (2005) Novel lectin-like bacteriocins of biocontrol strain Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 71: 5197–5207.
23. GhequireMGK, LiW, ProostP, LorisR, De MotR (2012) Plant lectin-like antibacterial proteins from phytopathogens Pseudomonas syringae and Xanthomonas citri. Environ Microbiol Rep 4: 373–380.
24. Van DammeEJM, LannooN, PeumansWJ (2008) Plant lectins. Adv Bot Res 48: 107–209.
25. GhequireMGK, LorisR, De MotR (2012) MMBL proteins: from lectin to bacteriocin. Biochem Soc Trans 40: 1553–1559.
26. Van DammeEJM, KakuH, PeriniF, GoldsteinIJ, PeetersB, et al. (1991) Biosynthesis, primary structure and molecular cloning of snowdrop (Galanthus nivalis L.) lectin. Eur J Biochem 202: 23–30.
27. HesterG, WrightCS (1996) The mannose-specific bulb lectin from Galanthus nivalis (snowdrop) binds mono- and dimannosides at distinct sites. Structure analysis of refined complexes at 2.3 Å and 3.0 Å resolution. J Mol Biol 262: 516–531.
28. FouquaertE, PeumansWJ, GheysenG, Van DammeEJM (2011) Identical homologs of the Galanthus nivalis agglutinin in Zea mays and Fusarium verticillioides. Plant Physiol Biochem 49: 46–54.
29. ShimokawaM, FukudomeA, YamashitaR, MinamiY, YagiF, et al. (2012) Characterization and cloning of GNA-like lectin from the mushroom Marasmius oreades. Glycoconj J 29: 457–465.
30. JungE, FuciniP, StewartM, NoegelAA, SchleicherM (1996) Linking microfilaments to intracellular membranes: the actin-binding and vesicle-associated protein comitin exhibits a mannose-specific lectin activity. EMBO J 15: 1238–1246.
31. WiensM, BelikovSI, KaluzhnayaOV, KraskoA, SchröderHC, et al. (2006) Molecular control of serial module formation along the apical-basal axis in the sponge Lubomirskia baicalensis: silicateins, mannose-binding lectin and mago nashi. Dev Genes Evol 216: 229–242.
32. TsutsuiS, TasumiS, SuetakeH, SuzukiY (2003) Lectins homologous to those of monocotyledonous plants in the skin mucus and intestine of pufferfish, Fugu rubripes. J Biol Chem 278: 20882–20889.
33. de Santana EvangelistaK, AndrichF, Figueiredo de RezendeF, NilandS, CordeiroMN, et al. (2009) Plumieribetin, a fish lectin homologous to mannose-binding B-type lectins, inhibits the collagen-binding α1β1 integrin. J Biol Chem 284: 34747–34759.
34. RajanB, FernandesJM, CaipangCM, KironV, RomboutJH, et al. (2011) Proteome reference map of the skin mucus of Atlantic cod (Gadus morhua) revealing immune competent molecules. Fish Shellfish Immunol 31: 224–231.
35. ChenJ, StevensonDM, WeimerPJ (2004) Albusin B, a bacteriocin from the ruminal bacterium Ruminococcus albus 7 that inhibits growth of Ruminococcus flavefaciens. Appl Environ Microbiol 70: 3167–3170.
36. WrightCS, HesterG (1996) The 2.0 Å structure of a cross-linked complex between snowdrop lectin and a branched mannopentaose: evidence for two unique binding modes. Structure 4: 1339–1352.
37. WrightLM, ReynoldsCD, RizkallahPJ, AllenAK, Van DammeEJM, et al. (2000) Structural characterisation of the native fetuin-binding protein Scilla campanulata agglutinin: a novel two-domain lectin. FEBS Lett 468: 19–22.
38. RamachandraiahG, ChandraNR, SuroliaA, VijayanM (2002) Re-refinement using reprocessed data to improve the quality of the structure: a case study involving garlic lectin. Acta Crystallogr D Biol Crystallogr 58: 414–420.
39. RobertV, VolokhinaEB, SenfF, BosMP, Van GelderP, et al. (2006) Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. PLoS Biol 4: e377.
40. WangX, BauwG, Van DammeEJM, PeumansWJ, ChenZL, et al. (2001) Gastrodianin-like mannose-binding proteins: a novel class of plant proteins with antifungal properties. Plant J 25: 651–661.
41. BalzariniJ (2007) Targeting the glycans of glycoproteins: a novel paradigm for antiviral therapy. Nat Rev Microbiol 5: 583–597.
42. TianQ, WangW, MiaoC, PengH, LiuB, et al. (2008) Purification, characterization and molecular cloning of a novel mannose-binding lectin from rhizomes of Ophiopogon japonicus with antiviral and antifungal activities. Plant Sci 175: 877–884.
43. BharathiY, Vijaya KumarS, PasaluIC, BalachandranSM, ReddyVD, et al. (2011) Pyramided rice lines harbouring Allium sativum (asaI) and Galanthus nivalis (gna) lectin genes impart enhanced resistance against major sap-sucking pests. J Biotechnol 152: 63–71.
44. HoorelbekeB, Van DammeEJM, RougéP, ScholsD, Van LaethemK, et al. (2011) Differences in the mannose oligomer specificities of the closely related lectins from Galanthus nivalis and Zea mays strongly determine their eventual anti-HIV activity. Retrovirology 8: 10.
45. VandenborreG, SmaggheG, Van DammeEJM (2011) Plant lectins as defense proteins against phytophagous insects. Phytochemistry 72: 1538–1550.
46. YangY, XuHL, ZhangZT, LiuJJ, LiWW, et al. (2011) Characterization, molecular cloning, and in silico analysis of a novel mannose-binding lectin from Polygonatum odoratum (Mill.) with anti-HSV-II and apoptosis-inducing activities. Phytomedicine 18: 748–755.
47. FuLL, ZhouCC, YaoS, YuJY, LiuB, et al. (2011) Plant lectins: targeting programmed cell death pathways as antitumor agents. Int J Biochem Cell Biol 43: 1442–1449.
48. LehotzkyRE, PartchCL, MukherjeeS, CashHL, GoldmanWE, et al. (2010) Molecular basis for peptidoglycan recognition by a bactericidal lectin. Proc Natl Acad Sci U S A 107: 7722–7727.
49. MikiT, HolstO, HardtWD (2012) The bactericidal activity of the C-type lectin RegIIIβ against Gram-negative bacteria involves binding to Lipid A. J Biol Chem 287: 34844–34855.
50. TielkerD, HackerS, LorisR, StrathmannM, WingenderJ, et al. (2005) Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology 151: 1313–1323.
51. BartelsKM, FunkenH, KnappA, BrockerM, WilhelmS, et al. (2011) Glycosylation is required for outer membrane localization of the lectin LecB in Pseudomonas aeruginosa. J Bacteriol 193: 1107–1113..
52. FunkenH, BartelsKM, WilhelmS, BrockerM, BottM, et al. (2012) Specific association of lectin LecB with the surface of Pseudomonas aeruginosa: role of outer membrane protein OprF. PLoS One 7: e46857..
53. Green MR, Sambrook JR (2012) Molecular cloning: a laboratory manual. 4th edition. New York: Cold Spring Harbor Laboratory Press. 2028 p.
54. ParretAHA, WynsL, De MotR, LorisR (2004) Overexpression, purification and crystallization of bacteriocin LlpA from Pseudomonas sp. BW11M1. Acta Crystallogr D Biol Crystallogr 60: 1922–1924.
55. PaceCN, VajdosF, FeeL, GrimsleyG, GrayT (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4: 2411–2423.
56. BlixtO, HeadS, MondalaT, ScanlanC, HuflejtME, et al. (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci U S A 101: 17033–17038.
57. SchneiderTR, SheldrickGM (2002) Substructure solution with SHELXD. Acta Crystallogr D Biol Crystallogr 58: 1772–1779.
58. de la Fortelle E, Bricogne G (1997) Maximum likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. In: Carter CW, Sweet RM, editors. Methods in Enzymology. Volume 276, Macromolecular Crystallography Part A. New York: Academic Press. 472–494.
59. AbrahamsJP, LeslieAG (1996) Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr D Biol Crystallogr 52: 30–42.
60. CowtanK (2010) Recent developments in classical density modification. Acta Crystallogr D Biol Crystallogr 66: 470–478.
61. PerrakisA, MorrisR, LamzinVS (1999) Automated protein model building combined with iterative structure refinement. Nat Struct Biol 6: 458–463.
62. EmsleyP, CowtanK (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132.
63. AdamsPD, GopalK, Grosse-KunstleveRW, HungLW, IoergerTR, et al. (2004) Recent developments in the PHENIX software for automated crystallographic structure determination. J Synchrotron Radiat 11: 53–55.
64. AfoninePV, Grosse-KunstleveRW, AdamsPD (2005) A robust bulk-solvent correction and anisotropic scaling procedure. Acta Crystallogr D Biol Crystallogr 61: 850–855.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2013 Číslo 2
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Isolation of a Novel Swine Influenza Virus from Oklahoma in 2011 Which Is Distantly Related to Human Influenza C Viruses
- A Roadmap to the Human Virome
- Neutrophils Exert a Suppressive Effect on Th1 Responses to Intracellular Pathogen
- Programmed Protection of Foreign DNA from Restriction Allows Pathogenicity Island Exchange during Pneumococcal Transformation