The Secret Life of Viral Entry Glycoproteins: Moonlighting in Immune Evasion
article has not abstract
Vyšlo v časopise:
The Secret Life of Viral Entry Glycoproteins: Moonlighting in Immune Evasion. PLoS Pathog 9(5): e32767. doi:10.1371/journal.ppat.1003258
Kategorie:
Pearls
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1003258
Souhrn
article has not abstract
Zdroje
1. SanchezA, LukwiyaM, BauschD, MahantyS, SanchezAJ, et al. (2004) Analysis of human peripheral blood samples from fatal and nonfatal cases of Ebola (Sudan) hemorrhagic fever: cellular responses, virus load, and nitric oxide levels. J Virol 78: 10370–10377.
2. QiuX, AudetJ, WongG, PilletS, BelloA, et al. (2012) Successful treatment of Ebola virus-infected cynomolgus macaques with monoclonal antibodies. Sci Transl Med 4: 138ra181.
3. WhiteJM, DelosSE, BrecherM, SchornbergK (2008) Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol 43: 189–219.
4. JeffersSA, SandersDA, SanchezA (2002) Covalent modifications of the Ebola virus glycoprotein. J Virol 76: 12463–12472.
5. RitchieG, HarveyDJ, StroeherU, FeldmannF, FeldmannH, et al. (2010) Identification of N-glycans from Ebola virus glycoproteins by matrix-assisted laser desorption/ionisation time-of-flight and negative ion electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom 24: 571–585.
6. WilsonJA, HeveyM, BakkenR, GuestS, BrayM, et al. (2000) Epitopes involved in antibody-mediated protection from Ebola virus. Science 287: 1664–1666.
7. PantophletR, BurtonDR (2006) GP120: target for neutralizing HIV-1 antibodies. Annu Rev Immunol 24: 739–769.
8. OuW, DelisleJ, JacquesJ, ShihJ, PriceG, et al. (2012) Induction of Ebola virus cross-species immunity using retrovirus-like particles bearing the Ebola virus glycoprotein lacking the mucin-like domain. Virol J 9: 32.
9. DiasJM, KuehneAI, AbelsonDM, BaleS, WongAC, et al. (2011) A shared structural solution for neutralizing Ebola viruses. Nat Struct Mol Biol 18: 1424–1427.
10. SimmonsG, Wool-LewisRJ, BaribaudF, NetterRC, BatesP (2002) Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence. J Virol 76: 2518–2528.
11. ReynardO, BorowiakM, VolchkovaVA, DelpeutS, MateoM, et al. (2009) Ebolavirus glycoprotein GP masks both its own epitopes and the presence of cellular surface proteins. J Virol 83: 9596–9601.
12. LeeJE, FuscoML, HessellAJ, OswaldWB, BurtonDR, et al. (2008) Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454: 177–182.
13. FrancicaJR, Varela-RohenaA, MedvecA, PlesaG, RileyJL, et al. (2010) Steric shielding of surface epitopes and impaired immune recognition induced by the Ebola virus glycoprotein. PLoS Pathog 6: e1001098 doi:10.1371/journal.ppat.1001098.
14. SanchezA, YangZY, XuL, NabelGJ, CrewsT, et al. (1998) Biochemical analysis of the secreted and virion glycoproteins of Ebola virus. J Virol 72: 6442–6447.
15. DolnikO, VolchkovaV, GartenW, CarbonnelleC, BeckerS, et al. (2004) Ectodomain shedding of the glycoprotein GP of Ebola virus. EMBO J 23: 2175–2184.
16. ItoH, WatanabeS, TakadaA, KawaokaY (2001) Ebola virus glycoprotein: proteolytic processing, acylation, cell tropism, and detection of neutralizing antibodies. J Virol 75: 1576–1580.
17. DruarC, SainiSS, CossittMA, YuF, QiuX, et al. (2005) Analysis of the expressed heavy chain variable-region genes of Macaca fascicularis and isolation of monoclonal antibodies specific for the Ebola virus' soluble glycoprotein. Immunogenetics 57: 730–738.
18. MaruyamaT, ParrenPW, SanchezA, RensinkI, RodriguezLL, et al. (1999) Recombinant human monoclonal antibodies to Ebola virus. J Infect Dis 179 Suppl 1: S235–239.
19. CiancioloGJ, CopelandTD, OroszlanS, SnydermanR (1985) Inhibition of lymphocyte proliferation by a synthetic peptide homologous to retroviral envelope proteins. Science 230: 453–455.
20. MorozovVA, MorozovAV, SemaanM, DennerJ (2012) Single mutations in the transmembrane envelope protein abrogate the immunosuppressive property of HIV-1. Retrovirology 9: 67.
21. YaddanapudiK, PalaciosG, TownerJS, ChenI, SariolCA, et al. (2006) Implication of a retrovirus-like glycoprotein peptide in the immunopathogenesis of Ebola and Marburg viruses. FASEB J 20: 2519–2530.
22. MangeneyM, HeidmannT (1998) Tumor cells expressing a retroviral envelope escape immune rejection in vivo. Proc Natl Acad Sci U S A 95: 14920–14925.
23. MangeneyM, RenardM, Schlecht-LoufG, BouallagaI, HeidmannO, et al. (2007) Placental syncytins: genetic disjunction between the fusogenic and immunosuppressive activity of retroviral envelope proteins. Proc Natl Acad Sci U S A 104: 20534–20539.
24. DupressoirA, LavialleC, HeidmannT (2012) From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta 33: 663–671.
25. MoldenhauerG, HenneC, KarhausenJ, MollerP (1999) Surface-expressed invariant chain (CD74) is required for internalization of human leucocyte antigen-DR molecules to early endosomal compartments. Immunology 96: 473–484.
26. CresswellP (1994) Assembly, transport, and function of MHC class II molecules. Annu Rev Immunol 12: 259–293.
27. BashaG, OmilusikK, Chavez-SteenbockA, ReinickeAT, LackN, et al. (2012) A CD74-dependent MHC class I endolysosomal cross-presentation pathway. Nat Immunol 13: 237–245.
28. ZhouC, LuL, TanS, JiangS, ChenYH (2011) HIV-1 glycoprotein 41 ectodomain induces activation of the CD74 protein-mediated extracellular signal-regulated kinase/mitogen-activated protein kinase pathway to enhance viral infection. J Biol Chem 286: 44869–44877.
29. ChangTL, GordonCJ, Roscic-MrkicB, PowerC, ProudfootAE, et al. (2002) Interaction of the CC-chemokine RANTES with glycosaminoglycans activates a p44/p42 mitogen-activated protein kinase-dependent signaling pathway and enhances human immunodeficiency virus type 1 infectivity. J Virol 76: 2245–2254.
30. DunnSJ, KhanIH, ChanUA, ScearceRL, MelaraCL, et al. (2004) Identification of cell surface targets for HIV-1 therapeutics using genetic screens. Virology 321: 260–273.
31. NeilSJ, ZangT, BieniaszPD (2008) Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451: 425–430.
32. KaletskyRL, FrancicaJR, Agrawal-GamseC, BatesP (2009) Tetherin-mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein. Proc Natl Acad Sci U S A 106: 2886–2891.
33. LauD, KwanW, GuatelliJ (2011) Role of the endocytic pathway in the counteraction of BST-2 by human lentiviral pathogens. J Virol 85: 9834–9846.
34. LopezLA, YangSJ, HauserH, ExlineCM, HaworthKG, et al. (2010) Ebola virus glycoprotein counteracts BST-2/Tetherin restriction in a sequence-independent manner that does not require tetherin surface removal. J Virol 84: 7243–7255.
35. LopezLA, YangSJ, ExlineCM, RengarajanS, HaworthKG, et al. (2012) Anti-tetherin activities of HIV-1 Vpu and Ebola virus glycoprotein do not involve removal of tetherin from lipid rafts. J Virol 86: 5467–5480.
36. SkaskoM, WangY, TianY, TokarevA, MunguiaJ, et al. (2012) HIV-1 Vpu protein antagonizes innate restriction factor BST-2 via lipid-embedded helix-helix interactions. J Biol Chem 287: 58–67.
37. BrancoLM, GroveJN, MosesLM, GobaA, FullahM, et al. (2010) Shedding of soluble glycoprotein 1 detected during acute Lassa virus infection in human subjects. Virol J 7: 306.
38. BrancoLM, GarryRF (2009) Characterization of the Lassa virus GP1 ectodomain shedding: implications for improved diagnostic platforms. Virol J 6: 147.
39. ChiangSF, LinTY, ChowKC, ChiouSH (2010) SARS spike protein induces phenotypic conversion of human B cells to macrophage-like cells. Mol Immunol 47: 2575–2586.
40. KongL, GiangE, RobbinsJB, StanfieldRL, BurtonDR, et al. (2012) Structural basis of hepatitis C virus neutralization by broadly neutralizing antibody HCV1. Proc Natl Acad Sci U S A 109: 9499–9504.
41. HelleF, VieyresG, ElkriefL, PopescuCI, WychowskiC, et al. (2010) Role of N-linked glycans in the functions of hepatitis C virus envelope proteins incorporated into infectious virions. J Virol 84: 11905–11915.
42. CrottaS, StillaA, WackA, D'AndreaA, NutiS, et al. (2002) Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein. J Exp Med 195: 35–41.
43. MachielsB, LétéC, GuillaumeA, MastJ, StevensonPG, et al. (2011) Antibody evasion by a gammaherpesvirus O-glycan shield. PLoS Pathog 7: e1002387 doi:10.1371/journal.ppat.1002387.
44. RessingME, van LeeuwenD, VerreckFA, KeatingS, GomezR, et al. (2005) Epstein-Barr virus gp42 is posttranslationally modified to produce soluble gp42 that mediates HLA class II immune evasion. J Virol 79: 841–852.
45. WeiCJ, BoyingtonJC, DaiK, HouserKV, PearceMB, et al. (2010) Cross-neutralization of 1918 and 2009 influenza viruses: role of glycans in viral evolution and vaccine design. Sci Transl Med 2: 24ra21.
46. DasSR, PuigbòP, HensleySE, HurtDE, BenninkJR, et al. (2010) Glycosylation focuses sequence variation in the influenza A virus H1 hemagglutinin globular domain. PLoS Pathog 6: e1001211 doi:10.1371/journal.ppat.1001211.
47. BukreyevA, YangL, FrickeJ, ChengL, WardJM, et al. (2008) The secreted form of respiratory syncytial virus G glycoprotein helps the virus evade antibody-mediated restriction of replication by acting as an antigen decoy and through effects on Fc receptor-bearing leukocytes. J Virol 82: 12191–12204.
48. AguilarHC, MatreyekKA, FiloneCM, HashimiST, LevroneyEL, et al. (2006) N-glycans on Nipah virus fusion protein protect against neutralization but reduce membrane fusion and viral entry. J Virol 80: 4878–4889.
49. MooreJP, SodroskiJ (1996) Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J Virol 70: 1863–1872.
50. Schlecht-LoufG, RenardM, MangeneyM, LetzelterC, RichaudA, et al. (2010) Retroviral infection in vivo requires an immune escape virulence factor encrypted in the envelope protein of oncoretroviruses. Proc Natl Acad Sci U S A 107: 3782–3787.
51. McLellanJS, PanceraM, CarricoC, GormanJ, JulienJP, et al. (2011) Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 480: 336–343.
52. CohenT, CohenSJ, AntonovskyN, CohenIR, ShaiY (2010) HIV-1 gp41 and TCRα trans-membrane domains share a motif exploited by the HIV virus to modulate T-cell proliferation. PLoS Pathog 6: e1001085 doi:10.1371/journal.ppat.1001085.
53. AshkenaziA, FaingoldO, KaushanskyN, Ben-NunA, ShaiY (2013) A highly conserved sequence associated with the HIV gp41 loop region is an immunomodulator of antigen-specific T cells in mice. Blood 121: 2244–2252.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2013 Číslo 5
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Malaria Parasite cGMP-dependent Protein Kinase Regulates Blood Stage Merozoite Secretory Organelle Discharge and Egress
- The Secret Life of Viral Entry Glycoproteins: Moonlighting in Immune Evasion
- Structural and Functional Basis for Inhibition of Erythrocyte Invasion by Antibodies that Target EBA-175
- DNA from Skeletal Remains from the 6 Century AD Reveals Insights into Justinianic Plague