#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Crohn’s disease-associated Escherichia coli strain LF82 relies on SOS and stringent responses to survive, multiply and tolerate antibiotics within macrophages


Autoři: Gaëlle Demarre aff001;  Victoria Prudent aff001;  Hanna Schenk aff003;  Emilie Rousseau aff001;  Marie-Agnès Bringer aff005;  Nicolas Barnich aff006;  Guy Tran Van Nhieu aff001;  Sylvie Rimsky aff001;  Silvia De Monte aff003;  Olivier Espéli aff001
Působiště autorů: CIRB–Collège de France, CNRS-UMR724, INSERM U1050, PSL Research University, Paris, France aff001;  Inovarion, Paris, France aff002;  Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany aff003;  Institut de Biologie de l’Ecole Normale Supérieure, Département de Biologie, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France aff004;  Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France aff005;  Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte, UMR Inserm/Université Clermont Auvergne U1071, USC INRA 2018, Clermont Ferrand, France aff006
Vyšlo v časopise: The Crohn’s disease-associated Escherichia coli strain LF82 relies on SOS and stringent responses to survive, multiply and tolerate antibiotics within macrophages. PLoS Pathog 15(11): e32767. doi:10.1371/journal.ppat.1008123
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1008123

Souhrn

Adherent Invasive Escherichia coli (AIEC) strains recovered from Crohn's disease lesions survive and multiply within macrophages. A reference strain for this pathovar, AIEC LF82, forms microcolonies within phagolysosomes, an environment that prevents commensal E. coli multiplication. Little is known about the LF82 intracellular growth status, and signals leading to macrophage intra-vacuolar multiplication. We used single-cell analysis, genetic dissection and mathematical models to monitor the growth status and cell cycle regulation of intracellular LF82. We found that within macrophages, bacteria may replicate or undergo non-growing phenotypic switches. This switch results from stringent response firing immediately after uptake by macrophages or at later stages, following genotoxic damage and SOS induction during intracellular replication. Importantly, non-growers resist treatment with various antibiotics. Thus, intracellular challenges induce AIEC LF82 phenotypic heterogeneity and non-growing bacteria that could provide a reservoir for antibiotic-tolerant bacteria responsible for relapsing infections.

Klíčová slova:

DNA replication – Cell cycle and cell division – Death rates – Lysis (medicine) – Antibiotics – Macrophages – Fluorescence microscopy – Intracellular pathogens


Zdroje

1. Darfeuille-Michaud A, Neut C, Barnich N, Lederman E, Di Martino P, Desreumaux P, et al. Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn’s disease. Gastroenterology. 1998;115: 1405–1413. doi: 10.1016/s0016-5085(98)70019-8 9834268

2. Glasser AL, Boudeau J, Barnich N, Perruchot MH, Colombel JF, Darfeuille-Michaud A. Adherent invasive Escherichia coli strains from patients with Crohn’s disease survive and replicate within macrophages without inducing host cell death. Infect Immun. 2001;69: 5529–5537. doi: 10.1128/IAI.69.9.5529-5537.2001 11500426

3. Elhenawy W, Oberc A, Coombes BK. A polymicrobial view of disease potential in Crohn’s-associated adherent-invasive E. coli. Gut Microbes. 2018;9: 166–174. doi: 10.1080/19490976.2017.1378291 28914579

4. Tawfik A, Flanagan PK, Campbell BJ. Escherichia coli-host macrophage interactions in the pathogenesis of inflammatory bowel disease. World J Gastroenterol. 2014;20: 8751–8763. doi: 10.3748/wjg.v20.i27.8751 25083050

5. Bringer M-A, Glasser A-L, Tung C-H, Méresse S, Darfeuille-Michaud A. The Crohn’s disease-associated adherent-invasive Escherichia coli strain LF82 replicates in mature phagolysosomes within J774 macrophages. Cell Microbiol. 2006;8: 471–484. doi: 10.1111/j.1462-5822.2005.00639.x 16469058

6. Lapaquette P, Bringer M-A, Darfeuille-Michaud A. Defects in autophagy favour adherent-invasive Escherichia coli persistence within macrophages leading to increased pro-inflammatory response. Cell Microbiol. 2012;14: 791–807. doi: 10.1111/j.1462-5822.2012.01768.x 22309232

7. Bringer M-A, Barnich N, Glasser A-L, Bardot O, Darfeuille-Michaud A. HtrA stress protein is involved in intramacrophagic replication of adherent and invasive Escherichia coli strain LF82 isolated from a patient with Crohn’s disease. Infect Immun. 2005;73: 712–721. doi: 10.1128/IAI.73.2.712-721.2005 15664909

8. Bringer M-A, Rolhion N, Glasser A-L, Darfeuille-Michaud A. The oxidoreductase DsbA plays a key role in the ability of the Crohn’s disease-associated adherent-invasive Escherichia coli strain LF82 to resist macrophage killing. J Bacteriol. 2007;189: 4860–4871. doi: 10.1128/JB.00233-07 17449627

9. Miquel S, Claret L, Bonnet R, Dorboz I, Barnich N, Darfeuille-Michaud A. Role of decreased levels of Fis histone-like protein in Crohn’s disease-associated adherent invasive Escherichia coli LF82 bacteria interacting with intestinal epithelial cells. J Bacteriol. 2010;192: 1832–1843. doi: 10.1128/JB.01679-09 20118249

10. Hajduk IV, Rodrigues CDA, Harry EJ. Connecting the dots of the bacterial cell cycle: Coordinating chromosome replication and segregation with cell division. Semin Cell Dev Biol. 2016;53: 2–9. doi: 10.1016/j.semcdb.2015.11.012 26706151

11. Haeusser DP, Levin PA. The great divide: coordinating cell cycle events during bacterial growth and division. Curr Opin Microbiol. 2008;11: 94–99. doi: 10.1016/j.mib.2008.02.008 18396093

12. Jonas K. To divide or not to divide: control of the bacterial cell cycle by environmental cues. Curr Opin Microbiol. 2014;18: 54–60. doi: 10.1016/j.mib.2014.02.006 24631929

13. Wood TK, Knabel SJ, Kwan BW. Bacterial persister cell formation and dormancy. Appl Environ Microbiol. 2013;79: 7116–7121. doi: 10.1128/AEM.02636-13 24038684

14. Lewis K. Persister cells. Annu Rev Microbiol. 2010;64: 357–372. doi: 10.1146/annurev.micro.112408.134306 20528688

15. Bigger J. TREATMENT OF STAPHYLOCOCCAL INFECTIONS WITH PENICILLIN BY INTERMITTENT STERILISATION. The Lancet. 1944;244: 497–500. doi: 10.1016/S0140-6736(00)74210-3

16. Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA, Holden DW. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science. 2014;343: 204–208. doi: 10.1126/science.1244705 24408438

17. Mouton JM, Helaine S, Holden DW, Sampson SL. Elucidating population-wide mycobacterial replication dynamics at the single-cell level. Microbiol Read Engl. 2016;162: 966–978. doi: 10.1099/mic.0.000288 27027532

18. Rycroft JA, Gollan B, Grabe GJ, Hall A, Cheverton AM, Larrouy-Maumus G, et al. Activity of acetyltransferase toxins involved in Salmonella persister formation during macrophage infection. Nat Commun. 2018;9: 1993. doi: 10.1038/s41467-018-04472-6 29777131

19. Dörr T, Lewis K, Vulić M. SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet. 2009;5: e1000760. doi: 10.1371/journal.pgen.1000760 20011100

20. Shan Y, Brown Gandt A, Rowe SE, Deisinger JP, Conlon BP, Lewis K. ATP-Dependent Persister Formation in Escherichia coli. mBio. 2017;8. doi: 10.1128/mBio.02267-16 28174313

21. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch. Science. 2004;305: 1622–1625. doi: 10.1126/science.1099390 15308767

22. Harms A, Fino C, Sørensen MA, Semsey S, Gerdes K. Prophages and Growth Dynamics Confound Experimental Results with Antibiotic-Tolerant Persister Cells. mBio. 2017;8. doi: 10.1128/mBio.01964-17 29233898

23. Amato SM, Fazen CH, Henry TC, Mok WWK, Orman MA, Sandvik EL, et al. The role of metabolism in bacterial persistence. Front Microbiol. 2014;5: 70. doi: 10.3389/fmicb.2014.00070 24624123

24. Verstraeten N, Knapen W, Fauvart M, Michiels J. A Historical Perspective on Bacterial Persistence. Methods Mol Biol Clifton NJ. 2016;1333: 3–13. doi: 10.1007/978-1-4939-2854-5_1

25. Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, Andersson DI, et al. Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol. 2019;17: 441–448. doi: 10.1038/s41579-019-0196-3 30980069

26. Amato SM, Brynildsen MP. Persister Heterogeneity Arising from a Single Metabolic Stress. Curr Biol CB. 2015;25: 2090–2098. doi: 10.1016/j.cub.2015.06.034 26255847

27. Bernier SP, Lebeaux D, DeFrancesco AS, Valomon A, Soubigou G, Coppée J-Y, et al. Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet. 2013;9: e1003144. doi: 10.1371/journal.pgen.1003144 23300476

28. Radzikowski JL, Vedelaar S, Siegel D, Ortega ÁD, Schmidt A, Heinemann M. Bacterial persistence is an active σS stress response to metabolic flux limitation. Mol Syst Biol. 2016;12: 882. doi: 10.15252/msb.20166998 27655400

29. Kim J-S, Wood TK. Tolerant, Growing Cells from Nutrient Shifts Are Not Persister Cells. mBio. 2017;8. doi: 10.1128/mBio.00354-17 28420737

30. Huynh KK, Grinstein S. Regulation of vacuolar pH and its modulation by some microbial species. Microbiol Mol Biol Rev MMBR. 2007;71: 452–462. doi: 10.1128/MMBR.00003-07 17804666

31. Wang G. Chloride flux in phagocytes. Immunol Rev. 2016;273: 219–231. doi: 10.1111/imr.12438 27558337

32. Uribe-Querol E, Rosales C. Control of Phagocytosis by Microbial Pathogens. Front Immunol. 2017;8: 1368. doi: 10.3389/fimmu.2017.01368 29114249

33. Kreuzer KN. DNA damage responses in prokaryotes: regulating gene expression, modulating growth patterns, and manipulating replication forks. Cold Spring Harb Perspect Biol. 2013;5: a012674. doi: 10.1101/cshperspect.a012674 24097899

34. Sharma UK, Chatterji D. Transcriptional switching in Escherichia coli during stress and starvation by modulation of sigma activity. FEMS Microbiol Rev. 2010;34: 646–657. doi: 10.1111/j.1574-6976.2010.00223.x 20491934

35. Rao NN, Kornberg A. Inorganic polyphosphate regulates responses of Escherichia coli to nutritional stringencies, environmental stresses and survival in the stationary phase. Prog Mol Subcell Biol. 1999;23: 183–195. 10448677

36. Claudi B, Spröte P, Chirkova A, Personnic N, Zankl J, Schürmann N, et al. Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell. 2014;158: 722–733. doi: 10.1016/j.cell.2014.06.045 25126781

37. Pocidalo J-J. Use of Fluoroquinolones for Intracellular Pathogens. Rev Infect Dis. 1989;11: S979–S984. doi: 10.1093/clinids/11.supplement_5.s979 2672263

38. den Blaauwen T, Lindqvist A, Löwe J, Nanninga N. Distribution of the Escherichia coli structural maintenance of chromosomes (SMC)-like protein MukB in the cell. Mol Microbiol. 2001;42: 1179–1188. doi: 10.1046/j.1365-2958.2001.02691.x 11886550

39. Manina G, Dhar N, McKinney JD. Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms. Cell Host Microbe. 2015;17: 32–46. doi: 10.1016/j.chom.2014.11.016 25543231

40. Dutta NK, Klinkenberg LG, Vazquez M-J, Segura-Carro D, Colmenarejo G, Ramon F, et al. Inhibiting the stringent response blocks Mycobacterium tuberculosis entry into quiescence and reduces persistence. Sci Adv. 2019;5: eaav2104. doi: 10.1126/sciadv.aav2104 30906866

41. Demarre G, Prudent V, Espéli O. Imaging the Cell Cycle of Pathogen E. coli During Growth in Macrophage. Methods Mol Biol Clifton NJ. 2017;1624: 227–236. doi: 10.1007/978-1-4939-7098-8_17 28842887

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2019 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#