The ETS transcription factor ELF1 regulates a broadly antiviral program distinct from the type I interferon response
Autoři:
Leon Louis Seifert aff001; Clara Si aff002; Debjani Saha aff003; Mohammad Sadic aff002; Maren de Vries aff002; Sarah Ballentine aff002; Aaron Briley aff002; Guojun Wang aff003; Ana M. Valero-Jimenez aff002; Adil Mohamed aff002; Uwe Schaefer aff005; Hong M. Moulton aff006; Adolfo García-Sastre aff003; Shashank Tripathi aff003; Brad R. Rosenberg aff003; Meike Dittmann aff002
Působiště autorů:
Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
aff001; Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
aff002; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
aff003; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
aff004; Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, New York, United States of America
aff005; Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, United States of America
aff006; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
aff007; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
aff008; Microbiology and Cell Biology Department, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
aff009
Vyšlo v časopise:
The ETS transcription factor ELF1 regulates a broadly antiviral program distinct from the type I interferon response. PLoS Pathog 15(11): e32767. doi:10.1371/journal.ppat.1007634
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1007634
Souhrn
Induction of vast transcriptional programs is a central event of innate host responses to viral infections. Here we report a transcriptional program with potent antiviral activity, driven by E74-like ETS transcription factor 1 (ELF1). Using microscopy to quantify viral infection over time, we found that ELF1 inhibits eight diverse RNA and DNA viruses after multi-cycle replication. Elf1 deficiency results in enhanced susceptibility to influenza A virus infections in mice. ELF1 does not feed-forward to induce interferons, and ELF1’s antiviral effect is not abolished by the absence of STAT1 or by inhibition of JAK phosphorylation. Accordingly, comparative expression analyses by RNA-seq revealed that the ELF1 transcriptional program is distinct from interferon signatures. Thus, ELF1 provides an additional layer of the innate host response, independent from the action of type I interferons.
Klíčová slova:
Gene expression – Transcription factors – Influenza viruses – Influenza A virus – Viral replication – DNA transcription – Interferons – Antiviral immune response
Zdroje
1. Schoggins JW. Interferon-Stimulated Genes: What Do They All Do? Annu Rev Virol. 2019; doi: 10.1146/annurev-virology-092818-015756 31283436
2. Dittmann M, Hoffmann H-H, Scull MA, Gilmore RH, Bell KL, Ciancanelli M, et al. A serpin shapes the extracellular environment to prevent influenza a virus maturation. Cell. 2015;160. doi: 10.1016/j.cell.2015.01.040 25679759
3. Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B, Eitson JL, et al. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature. 2014;505: 691–695. doi: 10.1038/nature12862 24284630
4. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature. 2011/04/12. 2011;472: 481–485. doi: 10.1038/nature09907 [pii] 21478870
5. Perelman SS, Abrams ME, Eitson JL, Chen D, Jimenez A, Mettlen M, et al. Cell-Based Screen Identifies Human Interferon-Stimulated Regulators of Listeria monocytogenes Infection. PLoS Pathog. 2016/12/22. 2016;12: e1006102. doi: 10.1371/journal.ppat.1006102 28002492
6. Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol. 2014;32: 513–545. doi: 10.1146/annurev-immunol-032713-120231 24555472
7. Fu XY, Kessler DS, Veals SA, Levy DE, Darnell JE Jr. ISGF3, the transcriptional activator induced by interferon alpha, consists of multiple interacting polypeptide chains. Proc Natl Acad Sci U S A. 1990/11/01. 1990;87: 8555–8559. Available: http://www.ncbi.nlm.nih.gov/pubmed/2236065 doi: 10.1073/pnas.87.21.8555 2236065
8. Levy DE, Kessler DS, Pine R, Darnell JE Jr. Cytoplasmic activation of ISGF3, the positive regulator of interferon-alpha-stimulated transcription, reconstituted in vitro. Genes Dev. 1989/09/01. 1989;3: 1362–1371. Available: http://www.ncbi.nlm.nih.gov/pubmed/2606351 doi: 10.1101/gad.3.9.1362 2606351
9. Meraz MA, White JM, Sheehan KCF, Bach EA, Rodig SJ, Dighe AS, et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell. 1996; doi: 10.1016/S0092-8674(00)81288-X
10. Park C, Li S, Cha E, Schindler C. Immune response in Stat2 knockout mice. Immunity. 2000; doi: 10.1016/S1074-7613(00)00077–7
11. Hatesuer B, Hoang HTT, Riese P, Trittel S, Gerhauser I, Elbahesh H, et al. Deletion of Irf3 and Irf7 Genes in Mice Results in Altered Interferon Pathway Activation and Granulocyte-Dominated Inflammatory Responses to Influenza A Infection. J Innate Immun. 2017; doi: 10.1159/000450705 27811478
12. Nair S, Poddar S, Shimak RM, Diamond MS. Interferon regulatory factor-1 (IRF-1) protects against chikungunya virus induced immunopathology by restricting infection in muscle cells. J Virol. 2017; doi: 10.1128/JVI.01419-17 28835505
13. Ciancanelli MJ, Huang SX, Luthra P, Garner H, Itan Y, Volpi S, et al. Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science (80-). 2015;348: 448–453. doi: 10.1126/science.aaa1578 25814066
14. Kar A, Gutierrez-Hartmann A. Molecular mechanisms of ETS transcription factor-mediated tumorigenesis. Critical Reviews in Biochemistry and Molecular Biology. 2013. doi: 10.3109/10409238.2013.838202 24066765
15. Randi AM, Sperone A, Dryden NH, Birdsey GM. Regulation of angiogenesis by ETS transcription factors. Biochemical Society Transactions. 2009. doi: 10.1042/BST0371248 19909256
16. Hollenhorst PC, Shah AA, Hopkins C, Graves BJ. Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family. Genes Dev. 2007;21: 1882–1894. doi: 10.1101/gad.1561707 17652178
17. Choi HJ, Geng Y, Cho H, Li S, Giri PK, Felio K, et al. Differential requirements for the Ets transcription factor Elf-1 in the development of NKT cells and NK cells. Blood. 2011;117: 1880–1887. doi: 10.1182/blood-2010-09-309468 21148815
18. You F, Wang P, Yang L, Yang G, Zhao YO, Qian F, et al. ELF4 is critical for induction of type I interferon and the host antiviral response. Nat Immunol. 2013;14: 1237–1246. doi: 10.1038/ni.2756 24185615
19. Sarasin-Filipowicz M, Oakeley EJ, Duong FHT, Christen V, Terracciano L, Filipowicz W, et al. Interferon signaling and treatment outcome in chronic hepatitis C. Proc Natl Acad Sci. 2008/05/10. 2008;105: 7034–7039. doi: 10.1073/pnas.0707882105 18467494
20. Pine R, Canova A, Schindler C. Tyrosine phosphorylated p91 binds to a single element in the ISGF2/IRF-1 promoter to mediate induction by IFN alpha and IFN gamma, and is likely to autoregulate the p91 gene. EMBO J. 1994;13: 158–167. Available: https://www.ncbi.nlm.nih.gov/pubmed/8306959 8306959
21. Gruenert DC, Finkbeiner WE, Widdicombe JH. Culture and transformation of human airway epithelial cells. Am J Physiol. 1995;268: L347–60. doi: 10.1152/ajplung.1995.268.3.L347 7900815
22. Cheon H, Holvey-Bates EG, Schoggins JW, Forster S, Hertzog P, Imanaka N, et al. IFNbeta-dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage. EMBO J. 2013/09/26. 2013;32: 2751–2763. doi: 10.1038/emboj.2013.203 24065129
23. Dittmann M, Hoffmann HH, Scull MA, Gilmore RH, Bell KL, Ciancanelli M, et al. A serpin shapes the extracellular environment to prevent influenza a virus maturation. Cell. 2015;160: 631–643. doi: 10.1016/j.cell.2015.01.040 25679759
24. Elf1tm1Jml [Internet]. Available: http://www.informatics.jax.org/allele/MGI:3590647
25. Rajsbaum R, Versteeg GA, Schmid S, Maestre AM, Belicha-Villanueva A, Martinez-Romero C, et al. Unanchored K48-linked polyubiquitin synthesized by the E3-ubiquitin ligase TRIM6 stimulates the interferon-IKKepsilon kinase-mediated antiviral response. Immunity. 2014;40: 880–895. doi: 10.1016/j.immuni.2014.04.018 24882218
26. Verger A, Buisine E, Carrère S, Wintjens R, Flourens A, Coll J, et al. Identification of Amino Acid Residues in the ETS Transcription Factor Erg That Mediate Erg-Jun/Fos-DNA Ternary Complex Formation. J Biol Chem. 2001;276: 17181–17189. doi: 10.1074/jbc.M010208200 11278640
27. Bredemeier-Ernst I, Nordheim A, Janknecht R. Transcriptional activity and constitutive nuclear localization of the ETS protein Elf-1. FEBS Lett. 1997;408: 47–51. Available: http://www.ncbi.nlm.nih.gov/pubmed/9180266 doi: 10.1016/s0014-5793(97)00387-6 9180266
28. Stirnweiss A, Ksienzyk A, Klages K, Rand U, Grashoff M, Hauser H, et al. No Title. 2010/03/24. 2010;184: 5179–5185. doi: 10.4049/jimmunol.0902264
29. Levy DE, Kessler DS, Pine R, Reich N, Darnell JE Jr. Interferon-induced nuclear factors that bind a shared promoter element correlate with positive and negative transcriptional control. Genes Dev. 1988/04/01. 1988;2: 383–393. Available: http://www.ncbi.nlm.nih.gov/pubmed/3371658 doi: 10.1101/gad.2.4.383 3371658
30. van Boxel-Dezaire AH, Rani MR, Stark GR. Complex modulation of cell type-specific signaling in response to type I interferons. Immunity. 2006/09/19. 2006;25: 361–372. doi: 10.1016/j.immuni.2006.08.014 16979568
31. De La Cruz-Rivera PC, Kanchwala M, Liang H, Kumar A, Wang L-FF, Xing C, et al. The IFN Response in Bats Displays Distinctive IFN-Stimulated Gene Expression Kinetics with Atypical RNASEL Induction. J Immunol. 2017/11/29. 2018;200: 209–217. doi: 10.4049/jimmunol.1701214 29180486
32. Larsen S, Kawamoto S, Tanuma S, Uchiumi F. The hematopoietic regulator, ELF-1, enhances the transcriptional response to Interferon-beta of the OAS1 anti-viral gene. Sci Rep. 2015;5: 17497. doi: 10.1038/srep17497 26643049
33. Lecine P, Algarte M, Rameil P, Beadling C, Bucher P, Nabholz M, et al. Elf-1 and Stat5 bind to a critical element in a new enhancer of the human interleukin-2 receptor alpha gene. Mol Cell Biol. Available: http://www.ncbi.nlm.nih.gov/pubmed/8943338
34. Rellahan BL, Jensen JP, Howcroft TK, Singer DS, Bonvini E, Weissman AM. Elf-1 regulates basal expression from the T cell antigen receptor zeta-chain gene promoter. J Immunol. 1998;160: 2794–2801. Available: https://www.ncbi.nlm.nih.gov/pubmed/9510181 9510181
35. Matsuyama T, Kimura T, Kitagawa M, Pfeffer K, Kawakami T, Watanabe N, et al. Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell. 1993;75: 83–97. Available: https://www.ncbi.nlm.nih.gov/pubmed/8402903 8402903
36. Ogasawara K, Hida S, Azimi N, Tagaya Y, Sato T, Yokochi-Fukuda T, et al. Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature. 1998;391: 700–703. doi: 10.1038/35636 9490414
37. Kimura T, Nakayama K, Penninger J, Kitagawa M, Harada H, Matsuyama T, et al. Involvement of the IRF-1 transcription factor in antiviral responses to interferons. Science (80-). 1994;264: 1921–1924. Available: https://www.ncbi.nlm.nih.gov/pubmed/8009222
38. Pine R, Decker T, Kessler DS, Levy DE, Darnell Jr. JE. Purification and cloning of interferon-stimulated gene factor 2 (ISGF2): ISGF2 (IRF-1) can bind to the promoters of both beta interferon- and interferon-stimulated genes but is not a primary transcriptional activator of either. Mol Cell Biol. 1990;10: 2448–2457. Available: https://www.ncbi.nlm.nih.gov/pubmed/2342456 doi: 10.1128/mcb.10.6.2448 2342456
39. Ochiai K, Maienschein-Cline M, Simonetti G, Chen J, Rosenthal R, Brink R, et al. Transcriptional Regulation of Germinal Center B and Plasma Cell Fates by Dynamical Control of IRF4. Immunity. 2013;38: 918–929. doi: 10.1016/j.immuni.2013.04.009 23684984
40. Derler I, Jardin I, Romanin C. The molecular mechanisms of STIM/Orai communications. A Review in the Theme: STIM and Orai Proteins in Calcium Signaling. Am J Physiol—Cell Physiol. 2016; doi: 10.1152/ajpcell.00007.2016
41. Srikanth S, Woo JS, Wu B, El-Sherbiny YM, Leung J, Chupradit K, et al. The Ca 2+ sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum. Nat Immunol. 2019; doi: 10.1038/s41590-018-0287-8 30643259
42. Soni D, Regmi SC, Wang D-M, DebRoy A, Zhao Y-Y, Vogel SM, et al. Pyk2 phosphorylation of VE-PTP downstream of STIM1-induced Ca 2+ entry regulates disassembly of adherens junctions. Am J Physiol Cell Mol Physiol. 2017; doi: 10.1152/ajplung.00008.2017 28385807
43. Nish S, Medzhitov R. Host defense pathways: role of redundancy and compensation in infectious disease phenotypes. Immunity. 2011/05/28. 2011;34: 629–636. doi: 10.1016/j.immuni.2011.05.009 21616433
44. Rodero MP, Crow YJ. Type I interferon-mediated monogenic autoinflammation: The type I interferonopathies, a conceptual overview. J Exp Med. 2016/11/09. 2016;213: 2527–2538. doi: 10.1084/jem.20161596 27821552
45. Yamazaki K, Umeno J, Takahashi A, Hirano A, Johnson TA, Kumasaka N, et al. A genome-wide association study identifies 2 susceptibility Loci for Crohn’s disease in a Japanese population. Gastroenterology. 2013;144: 781–788. doi: 10.1053/j.gastro.2012.12.021 23266558
46. Fuyuno Y, Yamazaki K, Takahashi A, Esaki M, Kawaguchi T, Takazoe M, et al. Genetic characteristics of inflammatory bowel disease in a Japanese population. J Gastroenterol. 2016;51: 672–681. doi: 10.1007/s00535-015-1135-3 26511940
47. Aiba Y, Yamazaki K, Nishida N, Kawashima M, Hitomi Y, Nakamura H, et al. Disease susceptibility genes shared by primary biliary cirrhosis and Crohn’s disease in the Japanese population. J Hum Genet. 2015;60: 525–531. doi: 10.1038/jhg.2015.59 26084578
48. Peloquin JM, Goel G, Kong L, Huang H, Haritunians T, Sartor RB, et al. Characterization of candidate genes in inflammatory bowel disease-associated risk loci. JCI Insight. 2016;1: e87899. doi: 10.1172/jci.insight.87899 27668286
49. Liu TC, Stappenbeck TS. Genetics and Pathogenesis of Inflammatory Bowel Disease. Annu Rev Pathol. 2016;11: 127–148. doi: 10.1146/annurev-pathol-012615-044152 26907531
50. Yang J, Yang W, Hirankarn N, Ye DQ, Zhang Y, Pan HF, et al. ELF1 is associated with systemic lupus erythematosus in Asian populations. Hum Mol Genet. 2011;20: 601–607. doi: 10.1093/hmg/ddq474 21044949
51. Juang YT, Tenbrock K, Nambiar MP, Gourley MF, Tsokos GC. Defective production of functional 98-kDa form of Elf-1 is responsible for the decreased expression of TCR zeta-chain in patients with systemic lupus erythematosus. J Immunol. 2002;169: 6048–6055. Available: https://www.ncbi.nlm.nih.gov/pubmed/12421992 doi: 10.4049/jimmunol.169.10.6048 12421992
52. Atreya I, Atreya R, Neurath MF. NF-kappaB in inflammatory bowel disease. J Intern Med. 2008;263: 591–596. doi: 10.1111/j.1365-2796.2008.01953.x 18479258
53. Maeda S, Hsu LC, Liu H, Bankston LA, Iimura M, Kagnoff MF, et al. Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1beta processing. Science (80-). 2005;307: 734–738. doi: 10.1126/science.1103685 15692052
54. Zubair A, Frieri M. NF-kappaB and systemic lupus erythematosus: examining the link. J Nephrol. 2013;26: 953–959. doi: 10.5301/jn.5000272 23807646
55. Crow MK. Type I interferon in the pathogenesis of lupus. J Immunol. 2014;192: 5459–5468. doi: 10.4049/jimmunol.1002795 24907379
56. Ghosh S, Chaudhary R, Carpani M, Playford R. Interfering with interferons in inflammatory bowel disease. Gut. 2006;55: 1071–1073. doi: 10.1136/gut.2005.090134 16849343
57. Fais S, Capobianchi MR, Silvestri M, Mercuri F, Pallone F, Dianzani F. Interferon expression in Crohn’s disease patients: increased interferon-gamma and -alpha mRNA in the intestinal lamina propria mononuclear cells. J Interf Res. 1994;14: 235–238. Available: https://www.ncbi.nlm.nih.gov/pubmed/7861027
58. Bolen CR, Ding S, Robek MD, Kleinstein SH. No Title. Hepatology. 2013/08/10. 59: 1262–1272. doi: 10.1002/hep.26657
59. Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu D, et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature. 2014/06/12. 2014;510: 363–369. doi: 10.1038/nature13437 24919153
60. Yan C, Higgins PJ. Drugging the undruggable: transcription therapy for cancer. Biochim Biophys Acta. 2013;1835: 76–85. doi: 10.1016/j.bbcan.2012.11.002 23147197
61. Mansilla S, Portugal J. Sp1 transcription factor as a target for anthracyclines: effects on gene transcription. Biochimie. 2008/01/30. 2008;90: 976–987. doi: 10.1016/j.biochi.2007.12.008 18226599
62. Buchwald P. Small-molecule protein-protein interaction inhibitors: therapeutic potential in light of molecular size, chemical space, and ligand binding efficiency considerations. IUBMB Life. 2010/10/28. 2010;62: 724–731. doi: 10.1002/iub.383 20979208
63. Scheuermann TH, Tomchick DR, Machius M, Guo Y, Bruick RK, Gardner KH. Artificial ligand binding within the HIF2alpha PAS-B domain of the HIF2 transcription factor. Proc Natl Acad Sci U S A. 2009/01/09. 2009;106: 450–455. doi: 10.1073/pnas.0808092106 19129502
64. Baud D, Gubler DJ, Schaub B, Lanteri MC, Musso D. An update on Zika virus infection. Lancet. 2017/06/26. 2017;390: 2099–2109. doi: 10.1016/S0140-6736(17)31450-2 28647173
65. Nkengasong JN, Onyebujoh P. Response to the Ebola virus disease outbreak in the Democratic Republic of the Congo. Lancet. 2018/06/20. 2018;391: 2395–2398. doi: 10.1016/S0140-6736(18)31326-6 29916371
66. Alonzo 3rd F, Kozhaya L, Rawlings SA, Reyes-Robles T, DuMont AL, Myszka DG, et al. CCR5 is a receptor for Staphylococcus aureus leukotoxin ED. Nature. 2013;493: 51–55. doi: 10.1038/nature11724 23235831
67. Zhang L, Bukreyev A, Thompson CI, Watson B, Peeples ME, Collins PL, et al. Infection of ciliated cells by human parainfluenza virus type 3 in an in vitro model of human airway epithelium. J Virol. 2005;79: 1113–1124. doi: 10.1128/JVI.79.2.1113-1124.2005 15613339
68. Feuer R, Mena I, Pagarigan R, Slifka MK, Whitton JL. Cell cycle status affects coxsackievirus replication, persistence, and reactivation in vitro. J Virol. 2002;76: 4430–4440. Available: https://www.ncbi.nlm.nih.gov/pubmed/11932410 doi: 10.1128/JVI.76.9.4430-4440.2002 11932410
69. Jones CT, Catanese MT, Law LM, Khetani SR, Syder AJ, Ploss A, et al. Real-time imaging of hepatitis C virus infection using a fluorescent cell-based reporter system. Nat Biotechnol. 2010;28: 167–171. doi: 10.1038/nbt.1604 20118917
70. Benboudjema L, Mulvey M, Gao Y, Pimplikar SW, Mohr I. Association of the herpes simplex virus type 1 Us11 gene product with the cellular kinesin light-chain-related protein PAT1 results in the redistribution of both polypeptides. J Virol. 2003;77: 9192–9203. Available: https://www.ncbi.nlm.nih.gov/pubmed/12915535 doi: 10.1128/JVI.77.17.9192-9203.2003 12915535
71. Chartier C, Degryse E, Gantzer M, Dieterle A, Pavirani A, Mehtali M. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli. J Virol. 1996;70: 4805–4810. Available: https://www.ncbi.nlm.nih.gov/pubmed/8676512 8676512
72. Evans JD, Hearing P. Distinct roles of the Adenovirus E4 ORF3 protein in viral DNA replication and inhibition of genome concatenation. J Virol. 2003;77: 5295–5304. Available: https://www.ncbi.nlm.nih.gov/pubmed/12692231 doi: 10.1128/JVI.77.9.5295-5304.2003 12692231
73. Stapleford KA, Coffey LL, Lay S, Borderia A V, Duong V, Isakov O, et al. Emergence and transmission of arbovirus evolutionary intermediates with epidemic potential. Cell Host Microbe. 2014;15: 706–716. doi: 10.1016/j.chom.2014.05.008 24922573
74. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12: 357–360. doi: 10.1038/nmeth.3317 25751142
75. Liao Y, Smyth GK, Shi W. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014; doi: 10.1093/bioinformatics/btt656 24227677
76. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15: 550. doi: 10.1186/s13059-014-0550-8 25516281
77. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43: e47. doi: 10.1093/nar/gkv007 25605792
78. Law CW, Chen Y, Shi W, Smyth GK. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15: R29. doi: 10.1186/gb-2014-15-2-r29 24485249
79. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Ser B. 1995; doi: 10.1111/j.2517-6161.1995.tb02031.x
80. Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11: R14. doi: 10.1186/gb-2010-11-2-r14 20132535
81. Walter W, Sanchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31: 2912–2914. doi: 10.1093/bioinformatics/btv300 25964631
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2019 Číslo 11
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Candida albicans triggers NADPH oxidase-independent neutrophil extracellular traps through dectin-2
- Mycobacterium abscessus virulence traits unraveled by transcriptomic profiling in amoeba and macrophages
- Trickle infection and immunity to Trichuris muris
- Porphyromonas gingivalis induces penetration of lipopolysaccharide and peptidoglycan through the gingival epithelium via degradation of junctional adhesion molecule 1