The non-antibiotic macrolide EM900 inhibits rhinovirus infection and cytokine production in human airway epithelial cells
The anti‐inflammatory effects of macrolides may be associated with a reduced frequency of exacerbation of chronic obstructive pulmonary disease (COPD). However, because the long‐term use of antibiotics may promote the growth of drug‐resistant bacteria, the development of a treatment to prevent COPD exacerbation with macrolides that do not exert anti‐bacterial effects is necessary. Additionally, the inhibitory effects of nonantibiotic macrolides on the replication of rhinovirus (RV), which is the major cause of COPD exacerbation, have not been demonstrated. Primary cultures of human tracheal epithelial cells and nasal epithelial cells were pretreated with the nonantibiotic macrolide EM900 for 72 h prior to infection with a major group RV type 14 rhinovirus (RV14) and were further treated with EM900 after infection. Treatment with EM900 before and after infection reduced RV14 titers in the supernatants and viral RNA within the cells. Moreover, cytokine levels, including interleukin (IL)‐1β and IL‐6, were reduced in the supernatants following RV14 infection. Treatment with EM900 before and after infection also reduced the mRNA and protein expression of intercellular adhesion molecule‐1 (ICAM‐1), which is the receptor for RV14, after infection and reduced the activation of the nuclear factor kappa‐B protein p50 in nuclear extracts after infection. Pretreatment with EM900 reduced the number and fluorescence intensity of the acidic endosomes through which RV RNA enters the cytoplasm. Thus, pretreatment with EM900 may inhibit RV infection by reducing the ICAM‐1 levels and acidic endosomes and thus modulate the airway inflammation associated with RV infections.
Keywords:
Airway epithelial cell, COPD, EM900, inflammation, rhinovirus.
Autoři:
Nadine Lusamba Kalonji 1,2; Kazuhiro Nomura 3; Tetsuaki Kawase 4; Chiharu Ota 1; Hiroshi Kubo 1; Takeya Sato 2; Teruyuki Yanagisawa 2; Toshiaki Sunazuka 5,6; Satoshi Ōmura 5; Mutsuo Yamaya 1
Působiště autorů:
Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai, Japan 2 Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
1; Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
3; Laboratory of Rehabilitative Auditory Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
4; Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
5; Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
6
Vyšlo v časopise:
Physiological Reports, 3, 2015, č. 10, s. 1-13
Kategorie:
Original Research
prolekare.web.journal.doi_sk:
https://doi.org/10.14814/phy2.12557
© 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Souhrn
The anti‐inflammatory effects of macrolides may be associated with a reduced frequency of exacerbation of chronic obstructive pulmonary disease (COPD). However, because the long‐term use of antibiotics may promote the growth of drug‐resistant bacteria, the development of a treatment to prevent COPD exacerbation with macrolides that do not exert anti‐bacterial effects is necessary. Additionally, the inhibitory effects of nonantibiotic macrolides on the replication of rhinovirus (RV), which is the major cause of COPD exacerbation, have not been demonstrated. Primary cultures of human tracheal epithelial cells and nasal epithelial cells were pretreated with the nonantibiotic macrolide EM900 for 72 h prior to infection with a major group RV type 14 rhinovirus (RV14) and were further treated with EM900 after infection. Treatment with EM900 before and after infection reduced RV14 titers in the supernatants and viral RNA within the cells. Moreover, cytokine levels, including interleukin (IL)‐1β and IL‐6, were reduced in the supernatants following RV14 infection. Treatment with EM900 before and after infection also reduced the mRNA and protein expression of intercellular adhesion molecule‐1 (ICAM‐1), which is the receptor for RV14, after infection and reduced the activation of the nuclear factor kappa‐B protein p50 in nuclear extracts after infection. Pretreatment with EM900 reduced the number and fluorescence intensity of the acidic endosomes through which RV RNA enters the cytoplasm. Thus, pretreatment with EM900 may inhibit RV infection by reducing the ICAM‐1 levels and acidic endosomes and thus modulate the airway inflammation associated with RV infections.
Keywords:
Airway epithelial cell, COPD, EM900, inflammation, rhinovirus.
Zdroje
1. Abisheganaden, J. A., P. C. Avila, J. L. Kishiyama, J. Liu, S. Yagi, D. Schnurr, et al. 2000. Effect of clarithromycin on experimental rhinovirus-16 colds: a randomized, double- blind, controlled trial. Am. J. Med. 108:453–459.Albert, R. K., J. Connett, W. C. Bailey, R. Casaburi, J. A. Jr
2. Cooper, G. J. Criner, et al. , and COPD Clinical Research Network. 2011. Azithromycin for prevention of exacerbations of COPD. N. Engl. J. Med. 365:689–698.
3. Casasnovas, J. M., and T. A. Springer. 1994. Pathway of rhinovirus disruption by soluble intercellular adhesion molecule 1 (ICAM-1): an intermediate in which ICAM-1 is bound and RNA is released. J. Virol. 68:5882–5889.
4. Greve, J. M., G. Davis, A. M. Meyer, C. P. Forte, S. C. Yost, C. W. Marlor, et al. 1989. The major human rhinovirus receptor is ICAM-1. Cell 56:839–847.
5. Higashi, F, H. Kubo, H. Yasuda, T. Nukiwa, and M. Yamaya. 2014. Additional treatment with clarithromycin reduces fever duration in patients with influenza. Respir. Investig. 52:302–309.
6. Jang, Y. J., H. J. Kwon, and B. J. Lee. 2006. Effect of clarithromycin on rhinovirus-16 infection in A549 cells. Eur. Respir. J. 27:12–19.
7. Mellman, I., R. Fuchs, and A. Helenius. 1986. Acidification of the endocytic and exocytic pathways. Ann. Rev. Biochem. 55:663–700.
8. Nass, R., and R. Rao. 1998. Novel localization of a Na+/H+ exchanger in a late endosomal compartment of yeast. Implications for vacuole biogenesis. J. Biol. Chem. 273:21054–21060.
9. Ni, W., X. Shao, X. Cai, C. Wei, J. Cui, R. Wang, et al. 2015. Prophylactic use of macrolide antibiotics for the prevention of chronic obstructive pulmonary disease exacerbation: a meta-analysis. PLoS ONE 10:e0121257.
10. Otsu, K., H. Ishinaga, S. Suzuki, A. Sugawara, T. Sunazuka, S. Omura, et al. 2011. Effects of a novel nonantibiotic macrolide, EM900, on cytokine and mucin gene expression in a human airway epithelial cell line. Pharmacology 88:327–332.
11. Papi, A., and S. L. Johnston. 1999. Respiratory epithelial cell expression of vascular cell adhesion molecule-1 and its up- regulation by rhinovirus infection via NF-jB and GATA transcription factors. J. Biol. Chem. 274:30041–30051.
12. Perez, L., and L. Carrasco. 1993. Entry of poliovirus into cells does not require a low-pH step. J. Virol. 67:4543–4548.
13. Riise, G. C., S. Larsson, C. G. Lofdahl, and B. A. Andersson. 1994. Circulating cell adhesion molecules in bronchial lavage and serum in COPD patients with chronic bronchitis. Eur. Respir. J. 7:1673–1677.
14. Seemungal, T. A., R. Harper-Owen, A. Bhowmik, D. J. Jeffries, and J. A. Wedzicha. 2000. Detection of rhinovirus in induced sputum at exacerbation of chronic obstructive pulmonary disease. Eur. Respir. J. 16:677–683.
15. Seemungal, T. A., T. M. Wilkinson, J. R. Hurst, W. R. Perera, R. J. Sapsford, and J. A. Wedzicha. 2008. Long-term erythromycin therapy is associated with decreased chronic obstructive pulmonary disease exacerbations. Am. J. Respir. Crit. Care Med. 178:1139–1147.
16. Sugawara, A., A. Sueki, T. Hirose, K. Nagai, H. Gouda, S. Hirono, et al. 2011. Novel 12-membered non-antibiotic macrolides from erythromycin A; EM900 series as novel leads for anti-inflammatory and/or immunomodulatory agents. Bioorg. Med. Chem. Lett. 21:3373–3376.
17. Sugawara, A., A. Sueki, T. Hirose, H. Shima, K. S. Akagawa, S. Omura, et al. 2012. Novel 12-membered non-antibiotic macrolides, EM900 series with anti-inflammatory and/or immunomodulatory activity; synthesis, structure-activity relationships and in vivo study. J. Antibiot. (Tokyo) 65:487– 490.
18. Suzuki, T., M. Yamaya, K. Sekizawa, M. Hosoda, N. Yamada, S. Ishizuka, et al. 2001a. Bafilomycin A1 inhibits rhinovirus infection in human airway epithelium: effects on endosome and ICAM-1. Am. J. Physiol. 280:L1115–L1127.
19. Suzuki, T., M. Yanai, M. Yamaya, T. Satoh-Nakagawa, K. Sekizawa, S. Ishida, et al. 2001b. Erythromycin and common cold in COPD. Chest 120:730–733.
20. Suzuki, T., M. Yamaya, K. Sekizawa, M. Hosoda, N. Yamada, S. Ishizuka, et al. 2002. Erythromycin inhibits rhinovirus infection in cultured human tracheal epithelial cells. Am. J. Respir. Crit. Care Med. 165:1113–1118.
21. Terao, H., K. Asano, K. Kanai, Y. Kyo, S. Watanabe, T. Hisamitsu, et al. 2003. Suppressive activity of macrolide antibiotics on nitric oxide production by lipopolysaccharide stimulation in mice. Mediators Inflamm. 12:195–202.
22. Yamaya, M., A. Azuma, H. Tanaka, H. Takizawa, K. Chida, Y. Taguchi, et al. 2008. Inhibitory effects of macrolide antibiotics on exacerbations and hospitalization in chronic obstructive pulmonary disease in Japan: a retrospective multicenter analysis. J. Am. Geriatr. Soc. 56:1358–1360.
23. Yamaya, M., A. Azuma, H. Takizawa, J. Kadota, J. Tamaoki, and S. Kudoh. 2012. Macrolide effects on the prevention of COPD exacerbations. Eur. Respir. J. 40:485–494.
24. Yamaya, M., L. K. Nadine, C. Ota, H. Kubo, T. Makiguchi, R. Nagatomi, et al. 2014a. Magnitude of influenza virus replication and cell damage is associated with interleukin-6 production in primary cultures of human tracheal epithelium. Respir. Physiol. Neurobiol. 202:16–23.
25. Yamaya, M., H. Nishimura, N. Lusamba, H. Kubo, and R. Nagatomi. 2014b. Formoterol and budesonide inhibit rhinovirus infection and cytokine production in primary cultures of human tracheal epithelial cells. Respir. Investig. 52:251–260.
26. Zhu, Z., W. Tang, A. Ray, Y. Wu, O. Einarsson, M. L. Landry, et al. 1996. Rhinovirus stimulation of interleukin-6 in vivo and in vitro. Evidence for nuclear factor jB-dependent transcriptional activation. J. Clin. Invest. 97:421–430.
Článok vyšiel v časopise
Physiological Reports
2015 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Subtle modulation of ongoing calcium dynamics in astrocytic microdomains by sensory inputs
- S100B and NSE serum concentrations after simulated diving in rats
- The non-antibiotic macrolide EM900 inhibits rhinovirus infection and cytokine production in human airway epithelial cells
- Noninvasive quantification of alveolar morphometry in elderly never- and ex-smokers