Changes in the lipid spectrum in endocrinopathies
Authors:
Patrícia Páleníková; Juraj Payer
Authors place of work:
V. interná klinika LF UK a UNB, Nemocnica Ružinov, Bratislava
Published in the journal:
AtheroRev 2017; 2(2): 130-135
Category:
reviews
Summary
Lipids are substances of biological origin – plants or animals. They are chemically esters of carboxyl fatty acids and alcohols, poorly soluble or insoluble in water. They are an important part of cell membrane and nerve tissues. They are a solvent of vitamins (A, D, E, K), hormones, drugs and dyes and the most important energy reserve. About 3 760 kJ (900 kcal) is released from 100 g of lipids. Lipoproteins are an important part of the cell with the main purpose to transport lipids. The plasma lipid levels depend on many external and internal factors – such as genetic assumptions, quantity and composition of the diet, physical activity and, of course, many acute and chronic diseases. The main focus of the article is to describe the effect of endocrine diseases on plasma lipid levels. Data on the effect of endocrinopathy are not consistent due to variety of factors such as differences in the severity of the disease, the duration of the disease, interindividual differences, consideration of genetic factors, differences in environmental factors such as diet, movement, and others.
Key words:
endocrinopaties, HDL-cholesterol, cholesterol, LDL-cholesterol, lipids, triglycerides
Zdroje
1. Pelkonen R, Nikkilä EA, Grahne B. Serum lipids, postheparin plasma lipase activities and glucose tolerance in patients with prolactinoma. Clin Endocrinol (Oxf) 1982; 16(4): 383–390.
2. Ling C, Svensson L, Odén B et al. Identification of functional prolactin (PRL) receptor gene expression: PRL inhibits lipoprotein lipase activity in human white adipose tissue. J Clin Endocrinol Metab 2003; 88(4): 1804–1808.
3. Pala NA, Laway BA, Misgar RA et al. Metabolic abnormalities in patients with prolactinoma: response to treatment with cabergoline. Diabetol Metab Syndr 2015; 7: 99. Dostupné z DOI: <http://dx.doi.org/10.1186/s13098–015–0094–4>.
4. Rosén T1, Edén S, Larson G et al. Cardiovascular risk factors in adult patients with growth hormone deficiency. Acta Endocrinol (Copenh) 1993; 129(3): 195–200.
5. de Boer H, Blok GJ, Voerman HJ et al. Serum lipid levels in growth hormone-deficient men. Metabolism 1994; 43(2): 199–203.
6. Newman CB, Carmichael JD, Kleinberg DL. Effects of low dose versus high dose human growth hormone on body composition and lipids in adults with GH deficiency: a meta-analysis of placebo-controlled randomized trials. Pituitary 2015; 18(3): 297–305. Dostupné z DOI: <http://dx.doi.org/10.1007/s11102–014–0571-z>.
7. Parini P, Angelin B, Lobie PE et al. Growth hormone specifically stimulates the expression of low density lipoprotein receptors in human hepatoma cells. Endocrinology 1995; 136(9): 3767–3773.
8. Rudling M, Norstedt G, Olivecrona H et al., Importance of growth hormone for the induction of hepatic low density lipoprotein receptors. Proc Natl Acad Sci U S A 1992; 89(15): 6983–6987.
9. Møller N, Jørgensen JO. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr Rev 2009; 30(2): 152–177. Dostupné z DOI: <http://dx.doi.org/10.1210/er.2008–0027>.
10. Colao A, Spinelli L, Cuocolo A et al. Cardiovascular consequences of early-onset growth hormone excess. J Clin Endocrinol Metab 2002; 87(7): 3097–3104.
11. Colao A, Pivonello R, Grasso LF et al. Determinants of cardiac disease in newly diagnosed patients with acromegaly: results of a 10 year survey study. Eur J Endocrinol 2011; 165(5): 713–721. Dostupné z DOI: <http://dx.doi.org/10.1530/EJE-11–0408>.
12. Boero L, Manavela M, Gómez Rosso L et al. Alterations in biomarkers of cardiovascular disease (CVD) in active acromegaly. Clin Endocrinol (Oxf) 2009; 70(1): 88–95. Dostupné z DOI: <http://dx.doi.org/10.1111/j.1365–2265.2008.03323.x>.
13. Vilar L, Naves LA, Costa SS et al. Increase of classic and nonclassic cardiovascular risk factors in patients with acromegaly. Endocr Pract 2007; 13(4): 363–372.
14. Takeda R, Tatami R, Ueda K et al. The incidence and pathogenesis of hyperlipidaemia in 16 consecutive acromegalic patients. Acta Endocrinol (Copenh) 1982; 100(3): 358–362.
15. Colao A, Marzullo P, Lombardi G. Effect of a six-month treatment with lanreotide on cardiovascular risk factors and arterial intima-media thickness in patients with acromegaly. Eur J Endocrinol 2002; 146(3): 303–309.
16. Christ ER, Cummings MH, Albany EE et al. ffects of growth hormone (GH) replacement therapy on very low density lipoprotein apolipoprotein B100 kinetics in patients with adult GH deficiency: a stable isotope study. J Clin Endocrinol Metab 1999; 84(1): 307–316.
17. Moller N, Vendelbo MH, Kampmann U et al. Growth hormone and protein metabolism. Clin Nutr 2009; 28(6): 597–603. Dostupné z DOI: <http://dx.doi.org/10.1016/j.clnu.2009.08.015>.
18. Twickler TB, Dallinga-Thie GM, Zelissen PM et al. The atherogenic plasma remnant-like particle cholesterol concentration is increased in the fasting and postprandial state in active acromegalic patients. Clin Endocrinol (Oxf) 2001; 55(1): 69–75.
19. Boero L, Manavela M, Meroño T et al. GH levels and insulin sensitivity are differently associated with biomarkers of cardiovascular disease in active acromegaly. Clin Endocrinol (Oxf) 2012; 77(4): 579–585. Dostupné z DOI: <http://dx.doi.org/10.1111/j.1365–2265.2012.04414.x>.
20. Beentjes JA, van Tol A, Sluiter WJ et al. Low plasma lecithin:cholesterol acyltransferase and lipid transfer protein activities in growth hormone deficient and acromegalic men: role in altered high density lipoproteins. Atherosclerosis 2000; 153(2): 491–498.
21. Duntas LH, Brenta G. The effect of thyroid disorders on lipid levels and metabolism. Med Clin North Am 2012; 96(2): 269–281. Dostupné z DOI: <http://dx.doi.org/10.1016/j.mcna.2012.01.012>.
22. Valdemarsson S, Hedner P, Nilsson-Ehle P. Dyslipoproteinaemia in hypothyroidism of pituitary origin: effects of L-thyroxine substitution on lipoprotein lipase, hepatic lipase, and on plasma lipoproteins. Acta Endocrinol (Copenh) 1983; 103(2): 192–197.
23. O'Brien T, Dinneen SF, O'Brien PC et al. Hyperlipidemia in patients with primary and secondary hypothyroidism. Mayo Clin Proc 1993; 68(9): 860–866.
24. Pearce EN. Update in lipid alterations in subclinical hypothyroidism. J Clin Endocrinol Metab 2012; 97(2): 326–333. Dostupné z DOI: <http://dx.doi.org/10.1210/jc.2011–2532>.
25. Wiersinga WM. Adult Hypothyroidism. In De Groot LJ, Chrousos G, Dungan K (eds). Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc. 2000–2017. Dostupné z WWW: <https://www.ncbi.nlm.nih.gov/books/NBK285561/#tyd-hypothyroidism.toc-9–1-historical>.
26. Rugge JB, Bougatsos C, Chou R. Screening and treatment of thyroid dysfunction: an evidence review for the U.S. Preventive Services Task Force. Ann Intern Med 2015; 162(1): 35–45. <http://dx.doi.org/10.7326/M14–1456>.
27. Garber JR, Cobin RH, Gharib H et al. Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Endocr Pract 2012; 18(6): 988–1028.
28. Lopez D, Abisambra Socarrás JF, Bedi M et al. Activation of the hepatic LDL receptor promoter by thyroid hormone. Biochim Biophys Acta 2007; 1771(9): 1216–1225.
29. Shin DJ, Osborne TF. Thyroid hormone regulation and cholesterol metabolism are connected through Sterol Regulatory Element-Binding Protein-2 (SREBP-2). J Biol Chem 2003; 278(36): 34114–34118.
30. Walton KW, Scott PJ, Dykes PW et al. The significance of alterations in serum lipids in thyroid dysfunction. II. Alterations of the metabolism and turnover of 131-I-low-density lipoproteins in hypothyroidism and thyrotoxicosis. Clin Sci 1965; 29(2): 217–238.
31. Staels B, Van Tol A, Chan L et al. Alterations in thyroid status modulate apolipoprotein, hepatic triglyceride lipase, and low density lipoprotein receptor in rats. Endocrinology 1990; 127(3): 1144–1152.
32. Scarabottolo L, Trezzi E, Roma P et al. Experimental hypothyroidism modulates the expression of the low density lipoprotein receptor by the liver. Atherosclerosis 1986; 59(3): 329–333.
33. Bonde Y, Breuer O, Lütjohann D et al. Thyroid hormone reduces PCSK9 and stimulates bile acid synthesis in humans. J Lipid Res 2014; 55(11): 2408–2415. Dostupné z DOI: <http://dx.doi.org/10.1194/jlr.M051664>.
34. Gälman C, Bonde Y, Matasconi M et al. Dramatically increased intestinal absorption of cholesterol following hypophysectomy is normalized by thyroid hormone. Gastroenterology 2008; 134(4): 1127–1136. Dostupné z DOI: <http://dx.doi.org/10.1053/j.gastro.2008.01.032>.
35. Kuusi T, Taskinen MR, Nikkilä EA. Lipoproteins, lipolytic enzymes, and hormonal status in hypothyroid women at different levels of substitution. J Clin Endocrinol Metab 1988; 66(1): 51–56.
36. Lam KS, Chan MK, Yeung RT. High-density lipoprotein cholesterol, hepatic lipase and lipoprotein lipase activities in thyroid dysfunction--effects of treatment. Q J Med 1986; 59(229): 513–521.
37. Valdemarsson S, Hedner P, Nilsson-Ehle P. Reversal of decreased hepatic lipase and lipoprotein lipase activities after treatment of hypothyroidism. Eur J Clin Invest 1982; 12(5): 423–428.
38. Tan KC, Shiu SW, Kung AW. Plasma cholesteryl ester transfer protein activity in hyper- and hypothyroidism. J Clin Endocrinol Metab 1998; 83(1): 140–143.
39. Johansson L, Rudling M, Scanlan TS et al. Selective thyroid receptor modulation by GC-1 reduces serum lipids and stimulates steps of reverse cholesterol transport in euthyroid mice. Proc Natl Acad Sci USA 2005; 102(29): 10297–10302.
40. Heimberg M, Olubadewo JO, Wilcox HG. Plasma lipoproteins and regulation of hepatic metabolism of fatty acids in altered thyroid states. Endocr Rev 1985 Fall; 6(4): 590–607.
41. Arnaldi G, Scandali VM, Trementino L et al. Pathophysiology of dyslipidemia in Cushing's syndrome. Neuroendocrinology 2010; 92(Suppl 1): 86–90. Dostupné z DOI: <http://dx.doi.org/10.1159/000314213>.
42. Mancini T, Kola B, Mantero F et al. High cardiovascular risk in patients with Cushing's syndrome according to 1999 WHO/ISH guidelines. Clin Endocrinol (Oxf) 2004; 61(6): 768–777.
43. Colao A, Pivonello R, Spiezia S et al. Persistence of increased cardiovascular risk in patients with Cushing's disease after five years of successful cure. J Clin Endocrinol Metab 1999; 84(8): 2664–2672.
44. Feingold KR, Grunfeld C. Diabetes and Dyslipidemia. In De Groot LJ, Chrousos G, Dungan K et al (eds). Endotext [Internet]. MDText.com, Inc: South Dartmouth (MA) 2015. Dostupné z WWW: <https://www.ncbi.nlm.nih.gov/books/NBK305900/>.
45. Taskinen MR, Nikkilä EA, Pelkonen R et al. Plasma lipoproteins, lipolytic enzymes, and very low density lipoprotein triglyceride turnover in Cushing's syndrome. J Clin Endocrinol Metab 1983; 57(3): 619–626.
46. Faggiano A, Pivonello R, Spiezia S et al. Cardiovascular risk factors and common carotid artery caliber and stiffness in patients with Cushing's disease during active disease and 1 year after disease remission. J Clin Endocrinol Metab 2003; 88(6): 2527–2533.
47. Hazra A, Pyszczynski NA, DuBois DC et al. Modeling of corticosteroid effects on hepatic low-density lipoprotein receptors and plasma lipid dynamics in rats. Pharm Res 2008; 25(4): 769–780. Dostupné z DOI: <http://dx.doi.org/10.1007/s11095–007–9371–8>.
48. Gälman C, Angelin B, Rudling M. Prolonged stimulation of the adrenals by corticotropin suppresses hepatic low-density lipoprotein and high-density lipoprotein receptors and increases plasma cholesterol. Endocrinology 2002; 143(5): 1809–1816.
49. Amatruda JM, Danahy SA, Chang CL. The effects of glucocorticoids on insulin-stimulated lipogenesis in primary cultures of rat hepatocytes. Biochem J 1983; 212(1): 135–141.
50. Lau DC, Roncari DA. Effects of glucocorticoid hormones on lipid-synthetic enzymes from different adipose tissue regions and from liver. Can J Biochem Cell Biol 1983; 61(12): 1245–1250.
51. Dolinsky VW, Douglas DN, Lehner R et al. Regulation of the enzymes of hepatic microsomal triacylglycerol lipolysis and re-esterification by the glucocorticoid dexamethasone. Biochem J 2004; 378(Pt 3): 967–974.
52. 52.Campbell JE, Peckett AJ, D'souza AM et al. Adipogenic and lipolytic effects of chronic glucocorticoid exposure. Am J Physiol Cell Physiol 2011; 300(1): C198-C209. Dostupné z DOI: <http://dx.doi.org/10.1152/ajpcell.00045.2010>.
53. Xu C, He J, Jiang H et al. Direct effect of glucocorticoids on lipolysis in adipocytes. Mol Endocrinol 2009; 23(8): 1161–1170. Dostupné z DOI: <http://dx.doi.org/10.1210/me.2008–0464>.
54. Peckett AJ, Wright DC, Riddell MC. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism 2011; 60(11): 1500–1510. Dostupné z DOI: <http://dx.doi.org/10.1016/j.metabol.2011.06.012>.
55. Agledahl I, Skjaerpe PA, Hansen JB et al. Low serum testosterone in men is inversely associated with non-fasting serum triglycerides: the Tromso study. Nutr Metab Cardiovasc Dis 2008; 18(4): 256–262.
56. Haffner SM, Mykkänen L, Valdez RA et al. Relationship of sex hormones to lipids and lipoproteins in nondiabetic men. J Clin Endocrinol Metab 1993; 77(6):1610–1615.
57. Hämäläinen E, Adlercreutz H, Ehnholm C et al. Relationships of serum lipoproteins and apoproteins to sex hormones and to the binding capacity of sex hormone binding globulin in healthy Finnish men. Metabolism 1986; 35(6): 535–541.
58. Wu FC, von Eckardstein A. Androgens and coronary artery disease. Endocr Rev 2003; 24(2): 183–217.
59. Corona G, Monami M, Rastrelli G et al. Testosterone and metabolic syndrome: a meta-analysis study. J Sex Med 2011; 8(1): 272–83. Dostupné z DOI: <http://dx.doi.org/10.1111/j.1743–6109.2010.01991.x>.
60. Whitsel EA, Boyko EJ, Matsumoto AM et al. Intramuscular testosterone esters and plasma lipids in hypogonadal men: a meta-analysis. Am J Med 2001; 111(4): 261–269.
61. Isidori AM, Giannetta E, Greco EA et al. Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. Clin Endocrinol (Oxf) 2005; 63(3): 280–293.
62. Corona G, Giagulli VA, Maseroli E et al. THERAPY OF ENDOCRINE DISEASE: Testosterone supplementation and body composition: results from a meta-analysis study. Eur J Endocrinol 2016; 174(3): R99-R116. Dostupné z DOI: <http://dx.doi.org/10.1530/EJE-15–0262>.
63. MD KF, Brinton EA, Grunfeld C. The Effect of Endocrine Disorders on Lipids and Lipoproteins. In: De Groot LJ, Chrousos G, Dungan K et al (eds). Endotext [Internet]. MDText.com: South Dartmouth (MA) 2017. Dostupné z WWW: <https://www.ncbi.nlm.nih.gov/books/NBK409608/#endo-disorder-effects.toc-abstract>.
64. Webb OL, Laskarzewski PM, Glueck CJ. Severe depression of high-density lipoprotein cholesterol levels in weight lifters and body builders by self-administered exogenous testosterone and anabolic-androgenic steroids. Metabolism 1984; 33(11): 971–975.
65. Friedl KE, Hannan CJ Jr, Jones RE et al. High-density lipoprotein cholesterol is not decreased if an aromatizable androgen is administered. Metabolism 1990; 39(1): 69–74.
66. Tan KC1, Shiu SW, Kung AW. Alterations in hepatic lipase and lipoprotein subfractions with transdermal testosterone replacement therapy. Clin Endocrinol (Oxf) 1999; 51(6): 765–769.
67. Feingold KR, Grunfeld C. Introduction to Lipids and Lipoproteins. In: De Groot LJ, Chrousos G, Dungan K et al (eds). Endotext [Internet]. MDText.com: South Dartmouth (MA) 2015. Dostupné z WWW: <https://www.ncbi.nlm.nih.gov/books/NBK305896/#lipid_intro.toc-abstract>.
68. Bittner V. Lipoprotein abnormalities related to women's health. Am J Cardiol 2002; 90(8A): 77i-84i.
69. Phan BA, Toth PP. Dyslipidemia in women: etiology and management. Int J Womens Health 2014; 6: 185–194. Dostupné z DOI: <http://dx.doi.org/10.2147/IJWH.S38133>
70. Cífková R, Krajčoviechová A. Dyslipidemia and cardiovascular disease in women. Curr Cardiol Rep 2015; 17(7): 609. Dostupné z DOI: <http://dx.doi.org/10.1007/s11886–015–0609–5>.
71. Feingold KR, Grunfeld C. Obesity and Dyslipidemia. In: De Groot LJ, Chrousos G, Dungan K et al (eds). Endotext [Internet]. MDText.com: South Dartmouth (MA) 2015. Dostupné z WWW: <https://www.ncbi.nlm.nih.gov/books/NBK305895/>.
72. Godsland IF. Effects of postmenopausal hormone replacement therapy on lipid, lipoprotein, and apolipoprotein (a) concentrations: analysis of studies published from 1974–2000. Fertil Steril 2001; 75(5): 898–915.
73. Lobo RA. Clinical review 27: Effects of hormonal replacement on lipids and lipoproteins in postmenopausal women. J Clin Endocrinol Metab 1991; 73(5): 925–930.
74. Goodman MP. Are all estrogens created equal? A review of oral vs. transdermal therapy. J Women´s Health (Larchmt) 2012; 21(2): 161–169. Dostupné z DOI: <http://dx.doi.org/10.1089/jwh.2011.2839>.
75. Smith GI, Reeds DN, Okunade AL et al. Systemic delivery of estradiol, but not testosterone or progesterone, alters very low density lipoprotein-triglyceride kinetics in postmenopausal women. J Clin Endocrinol Metab 2014; 99(7): E1306-E1310. Dostupné z DOI: <http://dx.doi.org/10.1210/jc.2013–4470>.
76. [Writing Group for the PEPI Trial]. Effects of estrogen or estrogen/progestin regimens on heart disease risk factors in postmenopausal women. The Postmenopausal Estrogen/Progestin Interventions (PEPI) Trial. JAMA 1995; 273(3): 199–208. Erratum in JAMA 1995; 274(21):1676.
77. Kim JJ, Choi YM. Dyslipidemia in women with polycystic ovary syndrome. Obstet Gynecol Sci 2013; 56(3): 137–142. Dostupné z DOI: <http://dx.doi.org/10.5468/ogs.2013.56.3.137>.
78. Wild RA. Dyslipidemia in PCOS. Steroids 2012; 77(4): 295–299. Dostupné z DOI: <http://dx.doi.org/10.1016/j.steroids.2011.12.002>.
Štítky
Angiology Diabetology Internal medicine Cardiology General practitioner for adultsČlánok vyšiel v časopise
Athero Review
2017 Číslo 2
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Memantine Eases Daily Life for Patients and Caregivers
- Spasmolytic Effect of Metamizole
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- What Effect Can Be Expected from Limosilactobacillus reuteri in Mucositis and Peri-Implantitis?
Najčítanejšie v tomto čísle
- What is the role of nutriceuticals in dyslipidemia management? Armolipid Plus
- Combination treatment with antihypertensive and hypolipidemic drugs
-
Remnant cholesterol: a fact or fiction?
Reflection on the problems related to remnant cholesterol - Changes in the lipid spectrum in endocrinopathies