#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

14-3-3 proteins and their clinical significance


Authors: R. Novobilský 1,2;  H. Štefanská 3;  P. Kušnierová 4,5
Authors‘ workplace: Katedra klinických neurověd, Lékařská fakulta, Ostravská univerzita, Ostrava 1;  Neurologická klinika, Fakultní nemocnice, Ostrava 2;  Lékařská fakulta, Ostravská univerzita, Ostrava 3;  Ústav laboratorní medicíny, Fakultní nemocnice Ostrava, Ostrava 4;  Ústav laboratorní medicíny, Lékařská fakulta, Ostravská univerzita, Ostrava 5
Published in: Klin. Biochem. Metab., 30, 2022, No. 4, p. 125-131

Overview

14-3-3 proteins are among the highly conserved acidic homologous proteins that are involved in several important processes in the human body, such as cell cycle control, apoptosis, neuronal development, cell growth, or signal transduction and phosphorylation. They consist of seven isoforms found in all eukaryotic cells. However, the highest expression of 14-3-3 proteins is shown in the brain. For this reason, the detection/determination of 14-3-3 proteins is important in patients with neurological diseases, predominantly in rapidly progressive dementia with neurological symptoms. The most commonly used method is Western blot with chromogenic or chemiluminescent detection. A possible variant is the ELISA determination of individual isoforms.

Keywords:

dementia – Creutzfeldt-Jakob disease – ELISA – Prions – Western blot – 14-3-3 proteins


Sources

1. Aitken, A. 14-3-3 proteins on the MAP. Trends Biochem. Sci., 1995, 20(3), s. 95-97. Dostupné z: doi:10.1016/ S0968-0004(00)88971-9.

2. Rusina, R., Nováková, J., Koukolík, F., Matěj, R. Vyšetřování proteinu 14-3-3 v mozkomíšním moku – klinicko patologická korelace. Česká a slovenská neurologie a neurochirurgie. Praha: Care Comm., 2008, 15(6).

3. Mhawech, P. 14-3-3 proteins—an update. Cell Res., 2005, 15(4), s. 228-236. Dostupné z: doi:10.1038/ sj.cr.7290291

4. Dougherty, M., Morrison, K., Morrison, D. K. Unlocking the code of 14-3-3. J Cell Sci., 2004, 117(10), s. 1875-1884. Dostupné z: doi:10.1242/jcs.01171

5. Foote, M., Zhou, Y. 14-3-3 proteins in neurological disorders. International J Biochem. Mol. Biol., 2012, 3(2), s. 152-164.

6. Benzinger, A., Popowicz, G. M., Joy, J. K., Majumdar, S., Holak, T. A., Hermeking, H. The crystal structure of the non-liganded 14-3-3σ protein: insights into determinants of isoform specific ligand binding and dimerization. Cell Res., 2005, 15(4), s. 219-227. Dostupné z: doi:10.1038/sj.cr.7290290

7. Aitken, A. 14-3-3 proteins: A historic overview. Sem. Canc. Biol., 2006, 16(3), s. 162-172. Dostupné z: doi:10.1016/j.semcancer.2006.03.005

8. Cornell, B., Toyo-Oka, T. 14-3-3 Proteins in Brain Development: Neurogenesis, Neuronal Migration and Neuromorphogenesis. Front. Mol. Neurosci., 2017, 10. Dostupné z: doi:10.3389/fnmol.2017.00318

9. Ferl, R. J., Manak, M. S., Reyes, M. F. The 14-3-3s. Genom. Biol., 2002, 3(7). Dostupné z: doi:10.1186/gb- 2002-3-7-reviews3010

10. Pennington, K. L., Chan, T. Y., Torres, M. P., Andersen, J. L. The dynamic and stress-adaptive signaling hub of 14-3-3: emerging mechanisms of regulation and context-dependent protein–protein interactions. Oncogene, 2018, 37(42), s. 5587-5604. Dostupné z: doi:10.1038/s41388-018-0348-3

11. Tzivion, G., Shen, Y. H., Zhu, J. 14-3-3 proteins; bringing new definitions to scaffolding. Oncogene, 2001, 20(44), s. 6331-6338. Dostupné z: doi:10.1038/ sj.onc.1204777

12. Dunphy, W. G., Kumagai, A. The cdc25 protein contains an intrinsic phosphatase activity. Cell, 1991, 67(1), s. 189-196. Dostupné z: doi:10.1016/0092- 8674(91)90582-J

13. Aghazadeh, Y., Papadopoulos, V. The role of the 14-3-3 protein family in health, disease, and drug development. Drug Discover. T., 2016, 21(2), s. 278-287. Dostupné z: doi:10.1016/j.drudis.2015.09.012

14. Berg, D., Holzmann, C., Riess, O. 14-3-3 proteins in the nervous system. Nat. Rev. Neurosci., 2003, 4(9), s. 752-762. Dostupné z: doi:10.1038/nrn1197

15. Steinacker, P., Aitken, A., Otto, M. 14-3-3 proteins in neurodegeneration, Semin. Cell Dev. Biol., 2011, 22(7), s. 696-704. Dostupné z: doi:10.1016/j.semcdb. 2011.08.005

16. Wilker, E. W., Grant, R. A., Artim, S. C., Yaffe, M. B. A Structural Basis for 14-3-3σ Functional Specificity. J Biol. Chem., 2005, 280(19), s. 18891-18898. Dostupné z: doi:10.1074/jbc.M500982200

17. Foote, M., Qiao, H., Graham, K., Wy, Y., Zhou, Y. Inhibition of 14-3-3 Proteins Leads to Schizophrenia-Related Behavioral Phenotypes and Synaptic Defects in Mice. Biol. Psych., 2015, 78(6), s. 386-395. Dostupné z: doi:10.1016/j.biopsych.2015.02.015

18. Qiao, H., Foote, M., Graham, K., Wy, Y., Zhou, Y. 14-3-3 Proteins Are Required for Hippocampal Long- Term Potentiation and Associative Learning and Memory. J Neurosci., 2014, 34(14), s. 4801-4808. Dostupné z: doi:10.1523/JNEUROSCI.4393-13.2014

19. Jin, J., Smith, F. D., Stark, C. Proteomic, Functional, and Domain-Based Analysis of In Vivo 14-3-3 Binding Proteins Involved in Cytoskeletal Regulation and Cellular Organization. Curr. Biol., 2004, 14(16), s. 1436-1450. Dostupné z: doi:10.1016/j.cub.2004.07.051

20. Cornell, B., Wachi, T., Zhukarev, V., Toyo-Oka, T. Regulation of neuronal morphogenesis by 14-3-3epsilon ( Ywhae ) via the microtubule binding protein, doublecortin. Hum. Mol. Gen., 2016, 25(20), s. 4405-4418. Dostupné z: doi:10.1093/hmg/ddw270

21. Rusina, R., Matěj, R. Neurodegenerativní onemocnění. 2., přepracované a doplněné vydání. Praha: Mladá fronta, 2019. Aeskulap. ISBN 978-80-204-5123-1.

22. Kaňovský, P., Bártková, A. Speciální neurologie. Olomouc: Univerzita Palackého v Olomouci, 2020. ISBN 978-80-244-5611-9.

23. Prusiner, S. B. Novel Proteinaceous Infectious Particles Cause Scrapie. Science, 1982, 216(4542), s. 136-144. Dostupné z: doi:10.1126/science.6801762

24. Geschwind, M. D. Prion Diseases. CONTINUUM: Lifelong Learn. Neurol., 2015, 21, s. 1612-1638. Dostupné z: doi:10.1212/CON.0000000000000251

25. Perrett, S., Ma, J., Wang, F. Prion disease and the ‘protein-only hypothesis’. Essays Biochem., 2014, 56, s. 181-191. Dostupné z: doi:10.1042/bse0560181

26. Koukolík, F., Jirák, R. Alzheimerova nemoc a další demence. Praha: Grada, 1998. ISBN 80-716-9615-3.

27. Prusiner, S. B. Nobel Lecture: Prions. Proc.Nat. Acad. Sci., 1998, 95(23), s. 13363-13383. Dostupné z: doi:10.1073/pnas.95.23.13363

28. Uttley, L., Carroll, C., Wong, R., Hilton, D. A., Stevenson, Tevenson, M. Creutzfeldt-Jakob disease: a systematic review of global incidence, prevalence, infectivity, and incubation. The Lancet Infect. Dis., 2020, 20(1), s. 2-10. Dostupné z: doi:10.1016/S1473-3099(19)30615-2

29. WHO manual for surveillance of human transmissible spongiform encephalopathies including variant Creutzfeldt-Jakob disease. Geneva: World Health Organization, 2003. ISBN 9241545887.

30. Hermann, P. Appelby, P., Brandel, J.-P. et al. Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease. The Lancet Neurol., 2021, 20(3), s. 235-246. Dostupné z: doi:10.1016/S1474- 4422(20)30477-4

31. Zerr, I., Kallenberg, K., Summers, D. M. et al. Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Brain, 2009, 132(10), s. 2659-2668. Dostupné z: doi:10.1093/brain/awp191

Labels
Clinical biochemistry Nuclear medicine Nutritive therapist
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#