Reproductive Functions in Women after Cancer Therapy
Authors:
J. Záhumenský 1; P. Feldmár 2; E. Kučera 1; J. Zmrhal 1; O. Gojiš 1; T. Kosová 2; M. Bendová 1; D. Stejskal 2
Authors place of work:
Gynekologicko-porodnická klinika, 3. LF UK a FN Královské Vinohrady Praha
1; Centrum lékařské genetiky a reprodukční medicíny, Gennet Praha
2
Published in the journal:
Klin Onkol 2012; 25(3): 173-177
Category:
Reviews
Summary
Improvement in early diagnostics and treatment options led to an increase in the number of young oncological patients in reproductive age. These young oncological patiens have life-long consequences of treatment, such as infertility, early menopause and sexual dysfunctions. There is the possibility of maintening fertility by assisted reproduction methods. So far, ovarian stimulation followed by ICSI and cryopreservation of embryos seem to be the most successful method. Unfortunately, this method is suitable only for patients with a stable partner where there is no risk of delay because of necessary stimulation of ovulation. For patients without a partner, it is possible to freeze stimulated oocytes. Cryopreservation of immature oocytes followed by in vitro maturation seems to be a very promising method. Freezing ovarial tissues followed by transplantation is at this point only an experimental procedure. The authors present their experience with in vitro maturation of oocytes of 28 women with pregnancy rate 14.3%. Twenty-seven cases of infertility with a high risk of ovarial hyperstimulation syndrome and one case of breast cancer patient before chemotherapy were chosen for IVM.
Key words:
fertility – fertilization in vitro – assisted reproduction techniques – cancer – chemotherapy – radiotherapy
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Submitted:
5. 12. 2011
Accepted:
9. 1. 2012
Zdroje
1. Bencova V, Bella V, Svec J. The dynamics of psychosocial burden development in breast cancer survivors: clinical success with psychosocial consequences. Klin Onkol 2011; 24(3): 203–208.
2. Rosen A, Rodriguez-Wallberg KA, Rosenzweig L. Psychosocial distress in young cancer survivors. Semin Oncol Nurs 2009; 25(4): 268–277.
3. Coufal O, Sporcrova I, Vrtelova P. What patients need to know before their breast cancer surgery. Klin Onkol 2011; 24(5): 343–347.
4. Lobo RA. Potential options for preservation of fertility in women. N Engl J Med 2005; 353(1): 64–73.
5. Battaglia DE, Goodwin P, Klein NA et al. Influence of maternal age on meiotic spindle assembly in oocytes from naturally cycling women. Hum Reprod 1996; 11(10): 2217–2222.
6. Maltaris T, Beckmann MW, Dittrich R. Review. Fertility preservation for young female cancer patients. In Vivo 2009; 23(1): 123–130.
7. Gracia CR, Ginsberg JP. Fertility risk in pediatric and adolescent cancers. Cancer Treat Res 2007; 138: 57–72.
8. West ER, Zelinski MB, Kondapalli LA et al. Preserving female fertility following cancer treatment: current options and future possibilities. Pediatr Blood Cancer 2009; 53(2): 289–295.
9. Johnson J, Canning J, Kaneko T et al. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 2004; 428(6979): 145–150.
10. Sklar CA, Mertens AC, Mitby P et al. Premature menopause in survivors of childhood cancer: a report from the childhood cancer survivor study. J Natl Cancer Inst 2006; 98(13): 890–896.
11. Meirow D, Nugent D. The effects of radiotherapy and chemotherapy on female reproduction. Hum Reprod Update 2001; 7(6): 535–543.
12. Meirow D, Epstein M, Lewis H et al. Administration of cyclophosphamide at different stages of follicular maturation in mice: effects on reproductive performance and fetal malformations. Hum Reprod 2001; 16(4): 632–637.
13. Wetzels JF. Cyclophosphamide-induced gonadal toxicity: a treatment dilemma in patients with lupus nephritis? Neth J Med 2004; 62(10): 347–352.
14. Hancke K, Isachenko V, Isachenko E et al. Prevention of ovarian damage and infertility in young female cancer patients awaiting chemotherapy-clinical approach and unsolved issues. Support Care Cancer 2011; 19(12): 1909–1919.
15. Larsen EC, Müller J, Schmiegelow K et al. Reduced ovarian function in long-term survivors of radiation- and chemotherapy-treated childhood cancer. J Clin Endocrinol Metab 2003; 88(11): 5307–5314.
16. Shalet SM. Effects of cancer chemotherapy on gonadal function of patients. Cancer Treat Rev 1980; 7(3): 141–152.
17. Schilsky RL, Sherins RJ, Hubbard SM et al. Long-term follow up of ovarian function in women treated with MOPP chemotherapy for Hodgkin’s disease. Am J Med 1981; 71(4): 552–556.
18. Donnez J, Dolmans MM. Preservation of fertility in females with haematological malignancy. Br J Haematol 2011; 154(2): 175–184.
19. Lutchman Singh K, Davies M, Chatterjee R. Fertility in female cancer survivors: pathophysiology, preservation and the role of ovarian reserve testing. Hum Reprod Update 2005; 11(1): 69–89.
20. Critchley HO, Wallace WH. Impact of cancer treatment on uterine function. J Natl Cancer Inst Monogr 2005; 34: 64–68.
21. Bath LE, Anderson RA, Critchley HO et al. Hypothalamic-pituitary-ovarian dysfunction after prepubertal chemotherapy and cranial irradiation for acute leukaemia. Hum Reprod 2001; 16(9): 1838–1844.
22. Goodwin T, Delasobera BE, Fisher PG. Reproductive health issues in survivors of childhood and adult brain tumors. Cancer Treat Res 2009; 150: 215–222.
23. Letourneau JM, Ebbel EE, Katz PP et al. Pretreatment fertility counseling and fertility preservation improve quality of life in reproductive age women with cancer. Cancer 2012; 118(6): 1710–1717.
24. Byrne J. Infertility and premature menopause in childhood cancer survivors. Med Pediatr Oncol 1999; 33(1): 24–28.
25. Letourneau JM, Ebbel EE, Katz PP et al. Acute ovarian failure underestimates age-specific reproductive impairment for young women undergoing chemotherapy for cancer. Cancer 2012; 118(7): 1933–1939.
26. Bath LE, Wallace WH, Shaw MP et al. Depletion of ovarian reserve in young women after treatment for cancer in childhood: detection by anti-Müllerian hormone, inhibin B and ovarian ultrasound. Hum Reprod 2003; 18(11): 2368–2374.
27. Larsen EC, Müller J, Rechnitzer C et al. Diminished ovarian reserve in female childhood cancer survivors with regular menstrual cycles and basal FSH <10 IU/l. Hum Reprod 2003; 18(2): 417–422.
28. Blakely LJ, Buzdar AU, Lozada JA et al. Effects of pregnancy after treatment for breast carcinoma on survival and risk of recurrence. Cancer 2004; 100(3): 465–469.
29. Hawkins MM, Smith RA. Pregnancy outcomes in childhood cancer survivors: probable effects of abdominal irradiation. Int J Cancer 1989; 43(3): 399–402.
30. Critchley HO. Factors of importance for implantation and problems after treatment for childhood cancer. Med Pediatr Oncol 1999; 33(1): 9–14.
31. Green DM, Zevon MA, Lowrie G et al. Congenital anomalies in children of patients who received chemotherapy for cancer in childhood and adolescence. N Engl J Med 1991; 325(3): 141–146.
32. Nagarajan R, Robison LL. Pregnancy outcomes in survivors of childhood cancer. J Natl Cancer Inst Monogr 2005; 34: 72–76.
33. Schover LR. Premature ovarian failure and its consequences: vasomotor symptoms, sexuality, and fertility. J Clin Oncol 2008; 26(5): 753–758.
34. Dew JE, Wren BG, Eden JA. A cohort study of topical vaginal estrogen therapy in women previously treated for breast cancer. Climacteric 2003; 6(1): 45–52.
35. Barbera L, Fitch M, Adams L et al. Improving care for women after gynecological cancer: the development of a sexuality clinic. Menopause 2011; 18(12): 1327–1333.
36. Mok-Lin E, Missmer S, Berry K et al. Public perceptions of providing IVF services to cancer and HIV patients. Fertil Steril 2011; 96(3): 722–727.
37. Ernst E, Bergholdt S, Jørgensen JS et al. The first woman to give birth to two children following transplantation of frozen/thawed ovarian tissue. Hum Reprod 2010; 25(5): 1280–1281.
38. Sánchez–Serrano M, Crespo J, Mirabet V et al. Twins born after transplantation of ovarian cortical tissue and oocyte vitrification. Fertil Steril 2010; 93(1): 268. e11–e13.
39. Sheikhi M, Hultenby K, Niklasson B et al. Clinical grade vitrification of human ovarian tissue: an ultrastructural analysis of follicles and stroma in vitrified tissue. Hum Reprod 2011; 26(3): 594–603.
40. Cobo A, Domingo J, Pérez S et al. Vitrification: an effective new approach to oocyte banking and preserving fertility in cancer patients. Clin Transl Oncol 2008; 10(5): 268–273.
41. Revel A, Revel-Vilk S, Aizenman E et al. At what age can human oocytes be obtained? Fertil Steril 2009; 92(2): 458–463.
42. Oktem O, Oktay K. Fertility preservation for breast cancer patients. Semin Reprod Med 2009; 27(6): 486–492.
43. Nogueira D, Staessen C, Van de Velde H et al. Nuclear status and cytogenetics of embryos derived from in vitro-matured oocytes. Fertil Steril 2000; 74(2): 295–298.
44. Smitz JE, Thompson JG, Gilchrist RB. The promise of in vitro maturation in assisted reproduction and fertility preservation. Semin Reprod Med 2011; 29(1): 24–37.
45. Trounson A, Anderiesz C, Jones G. Maturation of human oocytes in vitro and their developmental competence. Reproduction 2001; 121(1): 51–75.
46. Fadini R, Dal Canto MB, Mignini Renzini M et al. Effect of different gonadotrophin priming on IVM of oocytes from women with normal ovaries: a prospective randomized study. Reprod Biomed Online 2009; 19(3): 343–351.
47. Oktay KH. Options for preservation of fertility in women. N Engl J Med 2005; 353(13): 1418–1420.
48. Mikkelsen AL. Strategies in human in-vitro maturation and their clinical outcome. Reprod Biomed Online 2005; 10(5): 593–599.
49. Tang-Pedersen M, Westergaard LG, Erb K et al. Combination of IVF and IVM in naturally cycling women. Reprod Biomed Online 2012; 24(1): 47–53.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2012 Číslo 3
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
- Possibilities of Using Metamizole in the Treatment of Acute Primary Headaches
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
Najčítanejšie v tomto čísle
- Angioimmunoblastic T-cell Lymphoma as a Very Poor-Prognosis Malignancy – a Single Centre Experience
- Triple-Negative Breast Cancer: Analysis of Patients Diagnosed and/or Treated at the Masaryk Memorial Cancer Institute between 2004 and 2009
- New and Clinically Used Oncomarkers of Bladder Cancer
- Granulocyte-Colony Stimulating Factor (G-CSF) Accelerates Healing of Radiation Induced Moist Desquamation of the Skin