Implication of Bone Marrow Microenvironment in Pathogenesis of Multiple Myeloma
Authors:
B. Fišerová; L. Kubiczková; S. Ševčíková; R. Hájek
Authors‘ workplace:
Babákova myelomová skupina, Ústav patologické fyziologie, LF MU Brno
Published in:
Klin Onkol 2012; 25(4): 234-240
Category:
Reviews
Overview
Multiple myeloma is a hematooncological disease characterized by malignant proliferation of plasma cells. These cells accumulate in the bone marrow where they suppress physiological hematopoiesis; at the same time, these cells interact with a wide variety of cytokines, growth factors and adhesion molecules. It is obvious that the bone marrow microenvironment plays an important role in disease pathogenesis as well as treatment resistance.
Key words:
multiple myeloma – bone marrow – IL‑6
This study was supported by scientific program of the Czech Ministry of Education, Youth and Sports No. MSM0021622434, by grant of Czech Science Foundation No. GAP304/10/1395 and by grant of Internal Grant Agency of the Czech Ministry of Health No. NT11154 and NT12130.
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Submitted:
26. 4. 2012
Accepted:
10. 5. 2012
Sources
1. Hájek R, Mužík J, Maisnar V et al. Mnohočetný myelom, MNK klasifikace a Národní onkologický registr České republiky. Klin Onkol 2007; 20 (Suppl 1): 147– 151.
2. Hájek R, Krejčí M, Pour L et al. Mnohočetný myelom. Klin Onkol 2011; 24 (Suppl 1): S10– S13.
3. Uchiyama H, Barut BA, Chauhan D et al. Characterization of adhesion molecules on human myeloma cell lines. Blood 1992; 80(9): 2306– 2314.
4. Caligaris– Cappio F, Bergui L, Gregoretti MG et al. Role of marrow stromal cells in the growth of human multiple myeloma. Blood 1991; 77(12): 2688– 2693.
5. Gregoretti MG, Gottardi D, Ghia P et al. Characterization of bone marrow stromal cells from multiple myeloma. Leuk Res 1994; 18(9): 675– 662.
6. Ridley RC, Xiao H, Hata H et al. Expression of syndecan regulates human myeloma plasma cell adhesion to type I collagen. Blood 1993; 81(3): 767– 774.
7. Sanderson RD, Lalor P, Bernfield M. B lymphocytes express and lose syndecan at specific stages of differentiation. Cell Regul 1989; 1(1): 27– 35.
8. Wijdenes J, Vooijs WC, Clément C et al. A plasmocyte selective monoclonal antibody (B– B4) recognizes syndecan– 1. Br J Haematol 1996; 94(2): 318– 323.
9. Dhodapkar MV, Abe E, Theus A et al. Syndecan– 1 is a multifunctional regulator of myeloma pathobiology: control of tumor cell survival, growth, and bone cell differentiation. Blood 1998; 91(8): 2679– 2688.
10. Jourdan M, Ferlin M, Legouffe E et al. The myeloma cell antigen syndecan– 1 is lost by apoptotic myeloma cells. Br J Haematol 1998; 100(4): 637– 646.
11. van Driel M, Günthert U, Stauder R et al. CD44 isoforms distinguish between bone marrow plasma cells from normal individuals and patients with multiple myeloma at different stages of disease. Leukemia 1998; 12(11): 1821– 1828.
12. Crainie M, Belch AR, Mant MJ et al. Overexpression of the receptor for hyaluronan– mediated motility (RHAMM) characterizes the malignant clone in multiple myeloma: identification of three distinct RHAMM variants. Blood 1999; 93(5): 1684– 1696.
13. Eisterer W, Betcher O, Hilbe W et al. CD44 isoforms are differentially regulated in plasma cell dyscrasias and CD44v9 represents a new independent prognostic parametr in multiple myeloma. Leuk Res 2001; 25(12): 1051– 1057.
14. Cao Y, Luetkens T, Kobold S et al. The cytokine/ chemokine pattern in the bone marrow environment of multiple myeloma patients. Exp Hematol 2010; 38(10): 860– 867.
15. Sati H, Apperley JF, Greaves M et al. Interleukin‑6 is expressed by plasma cells from patients with multiple myeloma and monoclonal gammopathy of undetermined significance. Br J Haematol 1998; 101(2): 287– 295.
16. Villunger A, Egle A, Kos M et al. Contituents of autocrine IL‑6 loops in myeloma cell lines and their twargeting for suppression of neoplastic growth by antibody strategies. Int J Cancer 1996; 65(4): 498– 505.
17. Klein B, Zhang XG, Jourdan M et al. Paracrine rather then autocrine regulation of myeloma– cell growth and differentiation by interleukin‑6. Blood 1989; 73(2): 517– 526.
18. Uchiyama H, Barut BA, Mohrbacher AF et al. Adhesion of human myeloma– derived cell lines to bone marrow stromal cells stimulates interleukin‑6 secretion. Blood 1993; 82(12): 3712– 3720.
19. Hideshima T, Chauhan D, Schlossman R et al. The role of tumor necrosis factor a in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 2001; 20(33): 4519– 4527.
20. Dankbar B, Padró T, Leo R et al. Vascular endothelial factor and interleukin‑6 in paracrine tumor– stromal cell interactions in multiple myeloma. Blood 2000; 95(8): 2630– 2636.
21. Chauhan D, Uchiyama H, Akbarali Y et al. Multiple myeloma adhesion‑induced interleukin‑6 expression in bone marrow stromal cells involves activation of NF– kB. Blood 1996; 87(3): 1104– 1112.
22. Kim K, Lee J, Kim JH et al. Protein inhibitor of activated STAT3 modulates osteoclastogenesis by down– regulation of NFATc1 and osteoclast‑associated receptor. J Immunol 2007; 1178(9): 5588– 5594.
23. de la Mata J, Uy HL, Guise TA et al. Interleukin‑6 enhances hypercalcemia and bone resorption mediated by parathyroid hormone‑related protein in vivo. J Clin Invest 1995; 95(6): 2846– 2852.
24. Gunn WG, Conley A, Deininger L et al. A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK– 1 and interleukin‑6: a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells 2006; 24(4): 986– 991.
25. Bataille R, Jourdan M, Zhang XG et al. Serum levels of interleukin‑6, a potent myeloma cell growth factor, as a reflect of disease severity in plasma cell dyscrasias. J Clin Invest 1989; 84(6): 2008– 2011.
26. Asaoku H, Kawano M, Iwato K et al. Decrease in BSF– 2/ IL‑6 response in advanced cases of multiple myeloma. Blood 1988; 72(2): 429– 432.
27. Yasuda H, Shima N, Nakagawa N et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/ osteoclastogenesis‑inhibitory factor and is identical to TRANCE/ RANKL. Proc Natl Acad Sci USA 1998; 95(7): 3597– 3602.
28. Atkins GJ, Kostakis P, Pan B et al. RANKL expression is related to the differentiation state of human osteoblasts. J Bone Miner Res 2003; 18(6): 1088– 1098.
29. Lacey DL, Timms E, Tan HL et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 93(2): 165– 176.
30. Simonet WS, Lacey DL, Dunstan CR et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997; 89(2): 309– 319.
31. Roux S, Meignin V, Quillard J et al. RANK (receptor activator of nuclear factor– kB) and RANKL expression in multiple myeloma. Br J Haematol 2002; 117(1): 86– 92.
32. Croucher PI, Shipman CM, Lippitt J et al. Osteoprotegerin inhibits the development of osteolytic bone disease in multiple myeloma. Blood 2001; 98(13): 3534– 3540.
33. Giuliani N, Bataille R, Mancini C et al. Myeloma cells induce imbalance in the osteoprotegerin/ osteoprotegerin ligand systém in the human bone marrow microenvironment. Blood 2001; 98(13): 3527– 3533.
34. Terpos E, Szydlo R, Apperley JF et al. Soluble receptor activator of nuclear factor kB ligand– osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood 2003; 102(3): 1064– 1069.
35. Kehrl JH, Roberts AB, Wakefield LM et al. Transforming growth factor b is an important immunomodulatory protein for human B lymphocytes. J Immunol 1986; 137(12): 3855– 3860.
36. Urashima H, Ogata A, Chauhan D et al. Transforming growth factor– b1: differential effects on multiple myeloma versus normal B cells. Blood 1996; 87(5): 1928– 1938.
37. Takeuchi A, Abe M, Hiasa M et al. TGF‑β inhibition restores terminal osteoblast differentiation to suppress myeloma growth. PLos ONE 2010; 5(3): e9870.
38. Damiano JS, Cress AE, Hazlehurst LA et al. Cell adhesion mediated drug resistance (CAM– DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 1999; 93(5): 1658– 1667.
39. Landowski TH, Olashaw NE, Agrawal D et al. Cell adhesion– mediated drug resistance (CAM– DR) is associated with activation of NF– kB (RelB/ p50) in myeloma cells. Oncogene 2003; 22(16): 2417– 2421.
40. Gong Y, Slee RB, Fukai N et al. Osteoporosis– Pseudoglioma Syndrome Collaborative Group. LDL receptor‑related protein 5 (LRP5) affects bone accural and eye development. Cell 2001; 107(4): 513– 523.
41. Bain G, Müller T, Wang X et al. Activated b– catenin induces osteoblast differentiation of C3H10T1/ 2 cells and participates in BMP2 mediated signal transduction. Biochem Biophys Res Commun 2003; 301(1): 84– 91.
42. Tian E, Zhan E, Walker R et al. The role of the WNT– signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 2003; 349(26): 2483– 2494.
43. Politou M, Heath DJ, Rahemtulla A et al. Serum concentrations of Dickkopf– 1 protein are increased in patients with multiple myeloma and reduced after autologous stem cell transplantation. Int J Cancer 2006; 119(7): 1728– 1731.
44. Qiang YW, Barlogie B, Rudikoff S et al. Dkk1‑induced inhibition of Wnt signaling in osteoblast differentiation is an underlying mechanism of bone loss in multiple myeloma. Bone 2008; 42(4): 669– 680.
45. Oshima T, Abe M, Asano J et al. Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP– 2. Blood 2005; 106(9): 3160– 3165.
46. Giuliani N, Morandi F, Tagliaferri S et al. Production of Wnt inhibitors by myeloma cells: potantial effects on canonical Wnt pathway in the bone microenvironment. Cancer Res 2007; 67(16): 7665– 7674.
47. Giuliani N, Colla S, Morandi F et al. Myeloma cells block RUNX2/ CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation. Blood 2005; 106(7): 2472– 2483.
48. Semënov M, Tamai K, He X. SOST is a ligand for LRP5/ LRP6 and a Wnt signaling inhibitor. J Biol Chem 2005; 280(29): 26770– 26775.
49. Sutherland MK, Geoghegan JC, Yu C et al. Sclerostin promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation. Bone 2004; 35(4): 828– 835.
50. Colucci S, Brunetti G, Oranger A et al. Myeloma cells suppress osteoblasts through sclerostin secretion. Blood Cancer J 2011; 1(6): e27.
51. Hideshima T, Chauhan D, Richardson P et al. NF– kB as a therapeutic target in multiple myeloma. J Biol Chem 2002; 277(19): 16639– 16647.
52. Hideshima T, Chauhan D, Kiziltepe T et al. Biologic sequelae of IkB kinase (IKK) inhibition in multiple myeloma: therapeutic implications. Blood 2009; 113(21): 5228– 5236.
53. Madrid LV, Wang CY, Guttridge DC et al. Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/ p65 sibunit of NF– kB. Mol Cell Biol 2000; 20(5): 1626– 1638.
54. Tu Y, Gardner A, Lichtenstein A. The phosphatidylinositol 3– kinase/ AKT kinase pathway in multiple myeloma plasma cells: roles in cytokine– dependent survival and proliferative responses. Cancer Res 2000; 60(23): 6763– 6770.
55. Hideshima T, Nakamura N, Chauhan D et al. Biologic sequelae of interleukin‑6 induced PI3– K/ Akt signaling in multiple myeloma. Oncogene 2001; 20(42): 5991– 6000.
56. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007; 12(1): 9– 22.
57. Peterson TR, Laplante M, Thoreen CC et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009; 137(5): 873– 886.
58. Chatterjee M, Stühmer T, Herrmann P et al. Combined disruption of both the MEK/ ERK and the IL‑6R/ STAT3 pathways is required to induce apoptosis of multiple myeloma cells in the presence of bone marrow stromal cells. Blood 2004; 104(12): 3712– 3721.
59. Nakafuku M, Satoh T, Kkaziro Y. Differentiation fectors, including nerve growth factor, fibroblast growth factor, and interleukin‑6, induce an accumulation of an active Ras•GTP complex in rat pheochromocytoma PC12 cells. J Biol Chem 1992; 267(27): 19448– 19454.
60. Ge NL, Rudikoff S. Insulin‑like growth factor I is a dual effector of multiple myeloma cell growth. Blood 2000; 96(8): 2856– 2861.
61. Podar K, Tai Y, Davies FE et al. Vascular endothelial factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood 2001; 98 (2): 428– 435.
62. Giuliani N, Lunghi P, Morandi F et al. Downmodulation of ERK protein kinase activity inhibits VEGF secretion by human myeloma cells and myeloma‑induced angiogenesis. Leukemia 2004; 18(3): 628– 635.
63. Catlett– Falcone R, Landowski TH, Oshiro MM et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999; 10(1): 105– 115.
64. Puthier D, Bataille R, Amiot M. IL‑6 up– regulates mcl– 1 human myeloma cells through JAK/ STAT rather then ras/ MAP kinase pathway. Eur J Immunol 1999; 29(12): 3945– 3950.
65. Bharti AC, Shishodia S, Reuben JM et al. Nuclear factor– kB and STAT3 are constitutively active in CD138+ cells derived from multiple myeloma patients, and suppression of these transcription factors leads to apoptosis. Blood 2004; 103(8): 3175– 3184.
66. Hazlehurst LA, Damiano JS, Buyuksal I et al. Adhesion to fibronectin via b1 integrins regulates p27kip1 levels and contributes to cell adhesion mediated drug resistance (CAM– DR). Oncogene 2000; 19(38): 4319– 4327.
67. Azab AK, Quang P, Azab F et al. P– selectin glycoprotein ligand regulates the interaction of multiple myeloma cells with the bone marrow microenvironment. Blood 2012; 119(6): 1468– 1478.
68. Nimmanapalli R, Gerbino E, Dalton WS et al. HSP70 inhibition reverses cell adhesion mediated and acquired drug resistance in multiple myeloma. Br J Haematol 2008; 142(4): 551– 561.
69. Markovina S, Callander NS, O’Connor SL et al. Bortezomib‑resistant nuclear factor– kB activity in multiple myeloma cells. Mol Cancer Res 2008; 6(8): 1356– 1364.
70. Markovina S, Callender NS, O’Connor SL et al. Bone marrow stromal cells from multiple myeloma patients uniquely induce bortezomib resistant NF– kB activity in myeloma cells. Mol Cancer 2010; 9: 176.
Labels
Paediatric clinical oncology Surgery Clinical oncologyArticle was published in
Clinical Oncology
2012 Issue 4
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
- Metamizole in perioperative treatment in children under 14 years – results of a questionnaire survey from practice
- Possibilities of Using Metamizole in the Treatment of Acute Primary Headaches
Most read in this issue
- Hepatocellular Carcinoma – Long-Term Treatable Disease
- EGFR Mutations in Patients with Advanced NSCLC
- Treatment For Volume Upgrading of the Low-Grade Supratentorial Glioma After the Subtotal Neurosurgical Resection
- CT Colonography – Evolution of Methodology and Indications