#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Degradation of Proteins by Ubiquitin‑Proteasome Pathway


Authors: J. Matějíková 1;  L. Kubiczková 1,2;  L. Sedlaříková 1;  A. Potáčová 1;  R. Hájek 1,2;  S. Ševčíková 1,2
Authors‘ workplace: Babákova myelomová skupina, Ústav patologické fyziologie, LF MU, Brno2 Oddělení klinické hematologie, FN Brno 1
Published in: Klin Onkol 2013; 26(4): 251-256
Category: Reviews

Overview

All intracellular and some extracellular proteins are continually degraded and replaced by synthesis of new proteins. Both these processes need to stay in equilibrium since their balance may lead to emergence of diseases. Cells contain many proteolytic systems that ensure highly specific and controlled degradation of proteins. One of these systems is the proteasome, a very complex molecular engine allowing degradation of proteins conjugated to ubiquitin. Since the first isolation of proteasome in 1968, many details about its function have been uncovered. In 2004, Nobel Prize for chemistry was awarded for these discoveries. In our review article, we aimed to summarize information about the mechanism of highly selective degradation of proteins by the ubiquitin‑proteasome pathway. Individual parts of the paper summarize cur­rent knowledge about highly selective degradation of proteins by the ubiquitin‑proteasome system, mechanisms of protein degradation regulation and bio­logical effects of proteasome inhibitors.

Key words:
proteasome – ubiquitin – NF-kappa B – proteasome inhibitors – protein degradation


Sources

1. Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin‑proteasome pathway in normal and disease states. J Am Soc Nephrol 2006; 17(7): 1807– 1819.

2. Mitch WE, Goldberg AL. Mechanisms of muscle wasting. The role of the ubiquitin‑proteasome pathway. N Engl J Med 1996; 335(25): 1897– 1905.

3. Rock KL, Gramm C, Rothstein L et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 1994; 78(5): 761– 771.

4. Löwe J, Stock D, Jap B et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 1995; 268(5210): 533– 539.

5. Harris JR. The isolation and purification of a macromolecular protein component from the human erythrocyte ghost. Biochim Biophys Acta 1969; 188(1): 31– 42.

6. Wójcik C, DeMartino GN. Intracellular localization of proteasomes. Int J Biochem Cell Biol 2003; 35(5): 579– 589.

7. Peters JM. Proteasomes: protein degradation machines of the cell. Trends Biochem Sci 1994; 19(9): 377– 382.

8. Kumatori A, Tanaka K, Inamura N et al. Abnormally high expression of proteasomes in human leukemic cells. Proc Natl Acad Sci U S A 1990; 87(18): 7071– 7075.

9. Hershko A. The ubiquitin system for protein degradation and some of its roles in the control of the cell‑ division cycle (Nobel lecture). Angew Chem Int Ed Engl 2005; 44(37): 5932– 5943.

10. Todde V, Veenhuis M, van der Klei IJ. Autophagy: principles and significance in health and disease. Biochim Biophys Acta 2009; 1792(1): 3– 13.

11. Lee DH, Goldberg AL. Proteasome inhibitors: valuable new tools for cell bio­logists. Trends Cell Biol 1998; 8(10): 397– 403.

12. Jung T, Catalgol B, Grune T. The proteasomal system. Mol Aspects Med 2009; 30(4): 191– 296.

13. Voges D, Zwickl P, Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 1999; 68: 1015– 1068.

14. Bedford L, Paine S, Sheppard PW et al. Assembly, structure, and function of the 26S proteasome. Trends Cell Biol 2010; 20(7): 391– 401.

15. Unno M, Mizushima T, Morimoto Y et al. The structure of the mammalian 20S proteasome at 2.75 A resolution. Structure 2002; 10(5): 609– 618.

16. Groll M, Bajorek M, Köhler A et al. A gated channel into the proteasome core particle. Nat Struct Biol 2000; 7(11): 1062– 1067.

17. Jäger S, Groll M, Huber R et al. Proteasome beta‑type subunits: unequal roles of propeptides in core particle maturation and a hierarchy of active site function. J Mol Biol 1999; 291(4): 997– 1013.

18. Luciani F, Keşmir C, Mishto M et al. A mathematical model of protein degradation by the proteasome. Biophys J 2005; 88(4): 2422– 2432.

19. DeMartino GN, Moomaw CR, Zagnitko OP et al. PA700, an ATP‑ dependent activator of the 20 S proteasome, is an ATPase containing multiple members of a nucleotide‑binding protein family. J Biol Chem 1994; 269(33): 20878– 20884.

20. Sharon M, Taverner T, Ambroggio XI et al. Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol 2006; 4(8): e267.

21. Hochstrasser M. Lingering mysteries of ubiquitin‑chain assembly. Cell 2006; 124(1): 27– 34.

22. Li W, Bengtson MH, Ulbrich A et al. Genome‑ wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle‘s dynamics and signaling. PLoS One 2008; 3(1): e1487.

23. Metzger MB, Hristova VA, Weissman AM. HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cel Sci 2012; 125(Pt 3): 531– 537.

24. Thrower JS, Hoffman L, Rechsteiner M et al. Recognition of the polyubiquitin proteolytic signal. EMBO J 2000; 19(1): 94– 102.

25. Pickart CM, Fushman D. Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 2004; 8(6): 610– 616.

26. Peng J, Schwartz D, Elias JE et al. A proteomics ap­proach to understanding protein ubiquitination. Nat Biotechnol 2003; 21(8): 921– 926.

27. Petroski MD, Deshaies RJ. Mechanism of lysine 48‑linked ubiquitin‑chain synthesis by the cullin‑RING ubiquitin‑ligase complex SCF‑ Cdc34. Cell 2005; 123(6): 1107– 1120.

28. Saeki Y, Kudo T, Sone T et al. Lysine 63‑linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J 2009; 28(4): 359– 371.

29. Hatakeyama S, Yada M, Matsumoto M et al. U box proteins as a new family of ubiquitin‑protein ligases. J Biol Chem 2001; 276(35): 33111– 33120.

30. Verma R, Aravind L, Oania R et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 2002; 298(5593): 611– 615.

31. Reyes‑ Turcu FE, Ventii KH, Wilkinson KD. Regulation and cellular roles of ubiquitin‑specific deubiquitinating enzymes. Annu Rev Biochem 2009; 78: 363– 397.

32. Rodriguez M, Desterro J, Lain S et al. SUMO‑ 1 modification activates the transcriptional response of p53. EMBO J 1999; 18(22): 6455– 6461.

33. Sowa ME, Bennett EJ, Gygi SP et al. Defining the human deubiquitinating enzyme interaction landscape. Cell 2009; 138(2): 389– 403.

34. Schwickart M, Juany X, Lill JR et al. Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature 2010; 463(7277): 103– 107.

35. Striebel F, Kress W, Weber‑ Ban E. Controlled destruction: AAA+ ATPases in protein degradation from bacteria to eukaryotes. Curr Opin Struct Biol 2009; 19(2): 209– 217.

36. Kloetzel PM. The proteasome and MHC class I antigen processing. Biochim Biophys Acta 2004; 1695(1– 3): 225– 233.

37. Kaufman RJ. Orchestrating the unfolded protein response in health and disease. J Clin Incest 2002; 110(10): 1389– 1398.

38. Brodsky JL. The protective and destructive roles play­­ed by molecular chaperones during ERAD (endoplasmic‑ reticulum‑associated degradation). Biochem J 2007; 404(3): 353– 363.

39. Bagola K, Sommer T. Protein quality control: on IPODs and other JUNQ. Curr Biol 2008; 18(21): R1019– R1021.

40. Kropff M, Bisping G, Wenning D et al. Proteasome inhibition in multiple myeloma. Eur J Cancer 2006; 42(11): 1623– 1639.

41. Pahl HL. Activators and target genes of Rel/ NF‑ kappaB transcription factors. Oncogene 1999; 18(49): 6853– 6866.

42. Sen R, Baltimore D. Inducibility of kappa immunoglobulin enhancer‑binding protein Nf‑ kappa B by a posttranslational mechanism. Cell 1986; 47(6): 921– 928.

43. Régnier CH, Song HY, Gao X et al. Identification and characterization of an IkappaB kinase. Cell 1997; 90(2): 373– 383.

44. Makris C, Roberts JL, Karin M. The carboxyl‑terminal region of IkappaB kinase gamma (IKKgamma) is required for full IKK activation. Mol Cell Biol 2002; 22(18): 6573– 6581.

45. Kanarek N, Ben‑ Neriah Y. Regulation of NF‑ κB by ubiquitination and degradation of the IκBs. Immunol Rev 2012; 246(1): 77– 94.

46. Dejardin E. The alternative NF‑ kappaB pathway from bio­chemistry to bio­logy: pitfalls and promises for future drug development. Biochem Pharmacol 2006; 72(9): 1161– 1179.

47. Annunziata CM, Davis RE, Demchenko Y et al. Frequent engagement of the classical and alternative NF‑ kap­paB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007; 12(2): 115– 130.

48. Luqman S, Pezzuto JM. NFκB: a promising target for natural products in cancer chemoprevention. Phytother Res 2010; 24(7): 949– 963.

49. Hideshima T, Bradner JE, Wong J et al. Small‑molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci U S A 2005; 102(24): 8567– 8572.

50. Kaufman RJ. Orchestrating the unfolded protein response in health and disease. J Clin Incest 2002; 110(10): 1389– 1398.

51. McConkey DJ, Zhu K. Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist Updat 2008; 11(4– 5): 164– 179.

52. Kubiczková L, Matějíková J, Sedlaříková L et al. Inhibitory proteazomu v léčbě mnohočetného myelomu. Klin Okol 2013; 26(1): 11– 18.

Labels
Paediatric clinical oncology Surgery Clinical oncology

Article was published in

Clinical Oncology

Issue 4

2013 Issue 4
Popular this week
Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#