Modern Imaging Techniques for Anthracycline Cytostatics – Review of the Literature
Authors:
I. Blažková 1; M. Ryvolová 1,2; S. Křížková 1,2; E. Jílková 1; P. Kopel 1,2; T. Eckschlager 3; M. Stiborová 4; V. Adam 1,2; R. Kizek 1,2
Authors place of work:
Ústav chemie a biochemie, Agronomická fakulta Mendelovy univerzity v Brně2 CEITEC – Středoevropský technologický institut, VUT v Brně3 Klinika dětské hematologie a onkologie 2. LF UK a FN v Motole, Praha4 Katedra biochemie, Přírodovědecká fakulta UK v
1
Published in the journal:
Klin Onkol 2013; 26(4): 239-244
Category:
Reviews
Summary
Anthracycline cytostatics can be observed at the level of organelles, cells and whole organisms due to their fluorescent properties. Imaging techniques based on detection of fluorescence can be used not only for observation of drug interaction with tumor cells, but also for targeting therapy of tumors with nanoparticles containing anthracycline cytostatics. Doxorubicin and daunorubicin, enclosed in liposomes, as representatives of nanoparticles suitable for targeted therapy, are used in clinical practice. The main advantage of liposomal drugs is to reduce the side effects due to differences in pharmacokinetics and distribution of the drug in the body. Due to the fact that all biological mechanisms of action of anthracycline drugs are not still fully understood, modern imaging techniques offer tool for in vivo studies of these mechanisms.
Key words:
nanomedicine – cytostatic agents – drug delivery systems – doxorubicin – liposomes
Zdroje
1. Cabane E, Zhang X, Langowska K et al. Stimuli‑ Responsive polymers and their applications in nanomedicine. Biointerphases 2012; 7(1– 4): 1– 27.
2. Samarasinghe RM, Gibbons J, Kanwar RK et al. Nanotechnology based platforms for survivin targeted drug discovery. Expert Opin Drug Discov 2012; 7(11): 1083– 1092.
3. Chang HI, Yeh MK. Clinical development of liposome‑based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomed 2012; 7: 49– 60.
4. Keller AM, Mennel RG, Georgoulias VA et al. Randomized phase III trial of pegylated liposomal doxorubicin versus vinorelbine or mitomycin C plus vinblastine in women with taxane‑ refractory advanced breast cancer. J Clin Oncol 2004; 22(19): 3893– 3901.
5. Poljakova J, Frei E, Eckschlager T et al. Comparison of the cytotoxicity of and DNA adduct formation by the anticancer drug ellipticine in human breast adenocarcinoma, leukemia and neuroblastoma cells. Chem Listy 2007; 101(14): s253– s255.
6. Hynek D, Krejcova L, Zitka O et al. Electrochemical Study of Doxorubicin Interaction with Different Sequences of Single Stranded Oligonucleotides, Part I. Int J Electrochem Sci 2012; 7(1): 13– 33.
7. Stiborova M, Poljakova J, Eckschlager T et al. Analysis of covalent ellipticine‑ and doxorubicin‑derived adducts in DNA of neuroblastoma cells by the P‑ 32- postlabeling technique. Biomed Pap Olomouc 2012; 156(2): 115– 121.
8. Yong KT, Wang Y, Roy I et al. Preparation of quantum dot/ drug nanoparticle formulations for traceable targeted delivery and therapy. Theranostics 2012; 2(7): 681– 694.
9. Chomoucka J, Drbohlavova J, Huska D et al. Magnetic nanoparticles and targeted drug delivering. Pharmacol Res 2010; 62(2): 144– 149.
10. Kizek R, Adam V, Hrabeta J et al. Anthracyclines and ellipticines as DNA‑ damaging anticancer drugs: recent advances. Pharmacol Ther 2012; 133(1): 26– 39.
11. Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 2009; 30(11): 592– 599.
12. Hofheinz RD, Gnad‑ Vogt SU, Beyer U et al. Liposomal encapsulated anti‑cancer drugs. Anticancer Drugs 2005; 16(7): 691– 707.
13. Allen TM. Ligand‑ targeted therapeutics in anticancer therapy. Nat Rev Cancer 2002; 2(10): 750– 763.
14. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor‑ selective macromolecular drug targeting. In: Weber G (ed). Advances in Enzyme Regulation. Oxford: Pergamon‑ Elsevier Science Ltd 2001: 189– 207.
15. Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2012; 2(1): 3– 44.
16. Grobmyer SR, Zhou G, Gutwein LG et al. Nanoparticle delivery for metastatic breast cancer. Nanomed Nanotechnol Biol Med 2012; 8: S21– S30.
17. Pastorino F, Brignole C, Di Paolo D et al. Targeting liposomal chemotherapy via both tumor cell‑ specific and tumor vasculature‑specific ligands potentiates therapeutic efficacy. Cancer Res 2006; 66(20): 10073– 10082.
18. Drummond DC, Meyer O, Hong K et al. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 1999; 51(4): 691– 743.
19. Maurer N, Fenske DB, Cullis PR. Developments in liposomal drug delivery systems. Expert Opin Biol Ther 2001; 1(6): 923– 947.
20. Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med 2012; 63: 185– 198.
21. Alba E, Ruiz‑ Borrego M, Margeli M et al. Maintenance treatment with Pegylated liposomal doxorubicin versus observation following induction chemotherapy for metastatic breast cancer: GEICAM 2001- 01 study. Breast Cancer Res Treat 2010; 122(1): 169– 176.
22. Chan S, Davidson N, Juozaityte E et al. Phase III trial of liposomal doxorubicin and cyclophosphamide compared with epirubicin and cyclophosphamide as first‑line therapy for metastatic breast cancer. Ann Oncol 2004; 15(10): 1527– 1534.
23. Sparano JA, Makhson AN, Semiglazov VF et al. Pegylated liposomal doxorubicin plus docetaxel significantly improves time to progression without additive cardiotoxicity compared with docetaxel monotherapy in patients with advanced breast cancer previously treated with neoadjuvant‑ adjuvant anthracycline therapy: results from a randomized phase III study. J Clin Oncol 2009; 27(27): 4522– 4529.
24. Friedman A, Arosio P, Finazzi D et al. Ferritin as an important player in neurodegeneration. Parkinsonism Relat Disord 2011; 17(6): 423– 430.
25. Brissot P, Ropert M, Le Lan C et al. Non‑ transferrin bound iron: a key role in iron overload and iron toxicity. Biochim Biophys Acta 2012; 1820(3): 403– 410.
26. Kilic MA, Ozlu E, Calis S. A novel protein‑based anticancer drug encapsulating nanosphere: apoferritin‑doxorubicin complex. J Biomed Nanotechnol 2012; 8(3): 508– 514.
27. Karchemski F, Zucker D, Barenholz Y et al. Carbon nanotubes‑liposomes conjugate as a platform for drug delivery into cells. J Control Release 2012; 160(2): 339– 345.
28. Schnorr JM, Swager TM. Emerging applications of carbon nanotubes. Chem Mat 2011; 23(3): 646– 657.
29. Vashist SK, Zheng D, Pastorin G et al. Delivery of drugs and biomolecules using carbon nanotubes. Carbon 2011; 49(13): 4077– 4097.
30. Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 2005; 9(6): 674– 679.
31. Gu YJ, Cheng J, Jin J et al. Development and evaluation of pH‑ responsive single‑walled carbon nanotube‑ doxorubicin complexes in cancer cells. Int J Nanomed 2011; 6: 2889– 2898.
32. Zhang X, Meng L, Lu Q et al. Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 2009; 30(30): 6041– 6047.
33. Ali‑ Boucetta H, Al‑ Jamal KT, McCarthy D et al. Multiwalled carbon nanotube‑ doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun 2008; 28(4): 459– 461.
34. Zhu J, Liao L, Bian X et al. pH‑ controlled delivery of doxorubicin to cancer cells, based on small mesoporous carbon nanospheres. Small 2012; 8(17): 2715– 2720.
35. Wang Y, Yang ST, Wang Y et al. Adsorption and desorption of doxorubicin on oxidized carbon nanotubes. Colloid Surf B‑ Biointerfaces 2012; 97: 62– 69.
36. Yang XY, Zhang XY, Liu ZF et al. High‑Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide. J Phys Chem C 2008; 112(45): 17554– 17558.
37. Lu F, Haque SA, Yang ST et al. Aqueous compatible fullerene‑ doxorubicin conjugates. J Phys Chem C 2009; 113(41): 17768– 17773.
38. Cataldo F, Iglesias‑ Groth S, Garcia‑ Hernandez DA et al. Determination of the integrated Molar Absorptivity and Molar Extinction Coefficient of Hydrogenated Fullerenes. Fullerenes Nanotube Carbon Nanostructures 2013; 21(5): 417– 428.
39. Ryman‑ Rasmussen JP, Riviere JE, Monteiro‑Riviere NA.Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 2006; 91(1): 159– 165.
40. Zakharian TY, Seryshev A, Sitharaman B et al. A fullerene‑ paclitaxel chemotherapeutic: synthesis, characterization, and study of biological activity in tissue culture. J Am Chem Soc 2005; 127(36): 12508– 12509.
41. Partha R, Conyers JL. Biomedical applications of functionalized fullerene‑based nanomaterials. Int J Nanomed 2009; 4: 261– 275.
42. Karukstis KK, Thompson EH, Whiles JA et al. Deciphering the fluorescence signature of daunomycin and doxorubicin. Biophys Chem 1998; 73(3): 249– 263.
43. Gu JL, Su SS, Zhu MJ et al. Targeted doxorubicin delivery to liver cancer cells by PEGylated mesoporous silica nanoparticles with a pH‑ dependent release profile. Microporous Mesoporous Mat 2012; 161: 160– 167.
44. Duan JH, Liu MJ, Zhang YD et al. Folate‑ decorated chitosan/ doxorubicin poly(butyl)cyanoacrylate nanoparticles for tumor‑ targeted drug delivery. J Nanopart Res 2012; 14(4): 1– 9.
45. Lu YJ, Wei KC, Ma CC et al. Dual targeted delivery of doxorubicin to cancer cells using folate‑ conjugated magnetic multi‑walled carbon nanotubes. Colloid Surf B‑ Biointerfaces 2012; 89: 1– 9.
46. Wang EJ, Casciano CN, Clement RP et al. Active transport of fluorescent P‑ glycoprotein substrates: Evaluation as markers and interaction with inhibitors. Biochem Biophys Res Commun 2001; 289(2): 580– 585.
47. Prochazka P, Libra A, Zemanova Z et al. Mechanisms of ellipticine‑ mediated resistance in UKF‑ NB‑ 4 neuroblastoma cells. Cancer Sci 2012; 103(2): 334– 341.
48. Weaver JL, Pine PS, Aszalos A et al. Laser scanning and confocal microscopy of daunorubicin, doxorubicin and rhodamine 123 in multidrug‑resistant cells. Exp Cell Res 1991; 196(2): 323– 329.
49. Cheng Y, Yu SL, Wang JJ et al. In vitro and in vivo Antitumor Activity of Doxorubicin‑Loaded Alginic‑ Acid‑ Based Nanoparticles. Macromol Biosci 2012; 12(10): 1326– 1335.
50. Prados J, Melguizo C, Ortiz R et al. Doxorubicin‑Loaded Nanoparticles: New Advances in Breast Cancer Therapy. Anti‑Cancer Agents Med Chem 2012; 12(9):1058– 1070.
51. Wu JL, Liu CG, Wang XL et al. Preparation and characterization of nanoparticles based on histidine‑ hyaluronic acid conjugates as doxorubicin carriers. J Mater Sci Mater Med 2012; 23(8): 1921– 1929.
52. Yudina A, Lepetit‑ Coiffe M, De Smet M et al. In vivo temperature controlled ultrasound‑ mediated intracellular delivery of cell‑ impermeable compounds. J Control Release 2012; 161(1): 90– 97.
53. Ntziachristos V, Bremer C, Weissleder R. Fluorescence imaging with near‑ infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 2003; 13(1): 195– 208.
54. Rao JH, Dragulescu‑ Andrasi A, Yao HQ. Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol 2007; 18(1): 17– 25.
55. Chakravarthy KV, Davidson BA, Helinski JD et al. Doxorubicin‑conjugated quantum dots to target alveolar macrophages and inflammation. Nanomed Nanotechnol Biol Med 2011; 7(1): 88– 96.
56. Achilefu S. Rapid response activatable molecular probes for intraoperative optical image‑ guided tumor resection. Hepatology 2012; 56(3): 1170– 1173.
57. Lacivita E, Leopoldo M, Berardi F et al. Activatable Fluorescent Probes: A New Concept in Optical Molecular Imaging. Curr Med Chem 2012; 19(28): 4731– 4741.
58. Li JB, Chen K, Liu HG et al. Activatable near‑ infrared fluorescent probe for in vivo imaging of fibroblast activation protein‑alpha. Bioconjug Chem 2012; 23(8): 1704– 1711.
59. Thorek DL, Grimm J. Enzymatically activatable diagnostic probes. Curr Pharm Biotechnol 2012; 13(4): 523– 536.
60. Zhou KJ, Liu HM, Zhang SR et al. Multicolored pH‑ Tunable and activatable fluorescence nanoplatform responsive to physiologic pH stimuli. J Am Chem Soc 2012; 134(18): 7803– 7811.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2013 Číslo 4
- Spasmolytic Effect of Metamizole
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole in perioperative treatment in children under 14 years – results of a questionnaire survey from practice
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
- Obstacle Called Vasospasm: Which Solution Is Most Effective in Microsurgery and How to Pharmacologically Assist It?
Najčítanejšie v tomto čísle
- Degradation of Proteins by Ubiquitin‑Proteasome Pathway
- Registry of Neuroendocrine Tumors (NET) in Czech Republic After Three Years of Data Collection
- Contemporary Trends of the Adjutant Chemotherapy in Non‑ small Cell Lung Cancer
- Chromosome Banding Analysis of Peripheral Blood Lymphocytes Stimulated with IL‑2 and CpG Oligonucleotide DSP30 in Patients with Chronic Lymphocytic Leukemia