Modern Nanomedicine in Treatment of Lung Carcinomas
Authors:
Z. Heger 1; T. Eckschlager 2; M. Stiborová 3; V. Adam 1; O. Zítka 1; R. Kizek 1
Authors place of work:
Laboratoř metalomiky a nanotechnologií, Ústav chemie a biochemie, Mendelova univerzita v Brně
1; Klinika dětské hematologie a onkologie 2. LF UK a FN v Motole, Praha3 Katedra biochemie, Přírodovědecká fakulta, UK v Praze
2
Published in the journal:
Klin Onkol 2015; 28(4): 245-250
Category:
Review
doi:
https://doi.org/10.14735/amko2015245
Summary
Backgrounds:
Despite the fast development of new effective cytostatics and targeted therapy, the treatment efficiency of lung cancer is still insufficient. The systemic administration of drugs results in a decrease in drug concentrations in tumor site, particularly due to specific extracellular environment in lungs. Nanotransporters could serve as a platform, protecting a drug against these undesired effects, which may enhance its therapeutic index and reduce side effects of a drug. Moreover, nanotechnologies possess the potential to improve the diagnostics of lung cancer, and thus increase a survival rate of oncologic patients.
Aim:
The presented study is aimed to demonstrate the possibilities provided by nanotechnologies in the field of treatment and diagnostic of lung cancers and discuss the obstacles, which complicate a translation into clinical practice.
Key words:
targeted delivery – liposomes – nanoparticles – non‑small cell lung cancer – small cell lung cancer
The study was supported by League Against Cancer Prague (project 18257/2014-981) and by the Czech Ministry of Health – RVO, FN v Motole 00064203.
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Submitted:
21. 3. 2015
Accepted:
11. 5. 2015
Zdroje
1. Ferlay J, Shin HR, Bray F et al. Estimates of worldwide burden of cancer in 2008: Globocan 2008. Int J Cancer 2010; 127(12): 2893– 2917. doi: 10.1002/ ijc.25516.
2. Modrá kniha České onkologické společnosti. 18. vyd. Brno: Masarykův onkologický ústav 2014.
3. Mountain CF. The international system for staging lung cancer. Semin Surg Oncol 2000; 18(2): 106– 115.
4. Zhang J, Zhan Y, Ouyang M et al. Fatal interstitial lung disease associated with icotinib. J Thorac Dis 2014; 6(12): E267– E271. doi: 10.3978/ j.issn.2072‑ 1439.2014.10.24.
5. Heger Z, Gumulec J, Cernei N et al. 17beta‑estradiol‑ containing liposomes as a novel delivery system for the antisense therapy of ER‑ positive breast cancer: an in vitro study on the MCF‑ 7 cell line. Oncol Rep 2015; 33(2): 921– 929. doi: 10.3892/ or.2014.3627.
6. Nichols JW, Bae YH. Evidence and fallacy. J Control Release 2014; 190: 451– 464. doi: 10.1016/ j.jconrel.2014.03.057.
7. Maeda H. Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J Control Release 2012; 164(2): 138– 144. doi: 10.1016/ j.jconrel.2012.04.038.
8. Konno T, Maeda H, Iwai K et al. Selective targeting of anti‑cancer drug and simultneous image‑ enhancement in solid tumors by arterially administred lipid contrast‑ medium. Cancer 1984; 54(11): 2367– 2374.
9. Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 2013; 4(1): 81– 89. doi: 10.7150/ thno.7193.
10. Dreher MR, Liu W, Michelich CR et al. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 2006; 98(5): 335– 344.
11. Leu AJ, Berk DA, Lymboussaki AL et al. Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res 2000; 60(16): 4324– 4327.
12. Jain RK. Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev 1990; 9(3): 253– 266.
13. Stirland DL, Nichols JW, Miura S et al. Mind the gap: a survey of how cancer drug carriers are susceptible to the gap between research and practice. J Control Release 2013; 172(3): 1045– 1064. doi: 10.1016/ j.jconrel.2013.09.026.
14. Zitka O, Cernei N, Heger Z et al. Microfluidic chip coupled with modified paramagnetic particles for sarcosine isolation in urine. Electrophoresis 2013; 34(18): 2639– 2647.
15. Fabrik I, Adam V, Křížková S et al. Určení hladiny termostabilních thiolů u pacientů se zhoubným nádorem. Klin Onkol 2007; 20(6): 384– 389.
16. Petrlová J, Blaštík O, Průša R et al. Analýza obsahu metalothioneinu u pacientů se zhoubným nádorem prsu, tlustého střeva a nebo melanomem. Klin Onkol 2006; 19(2): 138– 142.
17. Mody VV, Siwale R, Singh A et al. Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2010; 2(4): 282– 289. doi: 10.4103/ 0975‑ 7406.72127.
18. Dobson J. Gene therapy progress and prospects: magnetic nanoparticle‑based gene delivery. Gene Therapy 2006; 13(4): 283– 287.
19. Rudge S, Peterson C, Vessely C et al. Adsorption and desorption of chemotherapeutic drugs from a magnetically targeted carrier (MTC). J Control Release 2001; 74(1– 3): 335– 340.
20. Corber SR et al. Cisplatin‑based metal organic framework nanoparticles for targeted drug delivery and tumor imaging. Abstracts of Papers of the American Chemical Society, 2014: sv. 247.
21. Blažková I, Vaculovičová M, Křížková S et al. Moderní zobrazovací techniky pro antracyklinová cytostatika – literární přehled. Klin Onkol 2013; 26(4): 239– 244. doi: 0.14735/ amko2013239.
22. Xie J, Lee S, Chen X. Nanoparticle‑based theranostic agents. Adv Drug Deliv Rev 2010; 62(11): 1064– 1079. doi: 10.1016/ j.addr.2010.07.009.
23. Guthi JS, Yang SG, Huang G et al. MRI‑ visible micellar nanomedicine for targeted drug delivery to lung cancer cells. Mol Pharm 2010; 7(1): 32– 40. doi: 10.1021/ mp9001393.
24. Chen YH, Tsai CY, Huang PY et al. Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm 2007; 4(5): 713– 722.
25. Simone CB 2nd, Friedberg JS, Glatstein E et al. Photodynamic therapy for the treatment of non‑small cell lung cancer. J Thorac Dis 2012; 4(1): 63– 75. doi: 10.3978/ j.issn.2072‑ 1439.2011.11.05.
26. Qian Y, Qiu M, Wu Q et al. Enhanced cytotoxic activity of cetuximab in EGFR‑ positive lung cancer by conjugating with gold nanoparticles. Sci Rep 2014; 4: 7490. doi: 10.1038/ srep07490.
27. Kao HW, Lin YY, Chen CC et al. Evaluation of EGFR‑ targeted radioimmuno‑ gold‑ nanoparticles as a theranostic agent in a tumor animal model. Bioorg Med Chem Lett 2013; 23(11): 3180– 3185. doi: 10.1016/ j.bmcl.2013.04.002.
28. Dufort S, Bianchi A, Henry M et al. Nebulized gadolinium‑based nanoparticles: a theranostic approach for lung tumor imaging and radiosensitization. Small 2015; 11(2): 215– 221. doi: 10.1002/ smll.201401284.
29. Shi H, Ye X, He X et al. Au@Ag/ Au nanoparticles assembled with activatable aptamer probes as smart „nano‑ doctors“ for image‑ guided cancer thermotherapy. Nanoscale 2014; 6(15): 8754– 8761. doi: 10.1039/ c4nr01927j.
30. Vajpayee V, Yang YJ, Kang SC et al. Hexanuclear self‑ assembled arene‑ ruthenium nano‑ prismatic cages: potential anticancer agents. Chem Commun (Camb.) 2011; 47(18): 5184– 5186. doi: 10.1039/ c1cc10167f.
31. Zhang S, Li J, Lykotrafitis G et al. Size‑ dependent endocytosis of nanoparticles. Adv Mater 2009; 21: 419– 424.
32. Muthukumar T, Chamundeeswari M, Prabhavathi Set al. Carbon nanoparticle from a natural source fabricated for folate receptor targeting, imaging and drug delivery application in A549 lung cancer cells. Eur J Pharm Biopharm 2014; 88(3): 730– 736. doi: 10.1016/ j.ejpb.2014.09.011.
33. Yang K, Zhang S, Zhang G et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 2010; 10(9): 3318– 3323. doi: 10.1021/ nl100996u.
34. Liu Z, Davis C, Cai W et al. Circulation and long‑term fate of functionalized, biocompatible single‑walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci U S A 2008; 105(5): 1410– 1415. doi: 10.1073/ pnas.0707654105.
35. Schipper ML, Nakayama‑Ratchford N, Davis CR et al. A pilot toxicology study of single‑walled carbon nanotubes in a small sample of mice. Nat Nanotechnol 2008; 3(4): 216– 221. doi: 10.1038/ nnano.2008.68.
36. Ungaro F, d‘Angelo I, Miro A et al. Engineered PLGA nano‑ and micro‑carriers for pulmonary delivery: challenges and promises. J Pharm Pharmacol 2012; 64(9): 1217– 1235. doi: 10.1111/ j.2042‑ 7158.2012.01486.x.
37. Sengupta S, Eavarone D, Capila I et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 2005; 436(7050): 568– 572.
38. Bharali DJ, Khalil M, Gurbuz M et al. Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int J Nanomedicine 2009; 4(1): 1– 7.
39. Komínková M, Guráň R, Merlos R et al. Study of functional qualities of different types of tailored liposomes with encapsulated doxorubicin using electrochemical and optical methods. Int J Electrochem Sci 2014; 9(6): 2993– 3007.
40. Poprach A, Petráková K, Vyskočil J et al. Kardiotoxicita léků používaných v onkologii. Klin Onkol 2008; 21(5): 288– 293.
41. Devarajan P, Tarabishi R, Mishra J et al. Low renal toxicity of lipoplatin compared to cisplatin in animals. Anticancer Res 2004; 24(4): 2193– 2200.
42. Mylonakis N, Athanasiou A, Ziras N et al. Phase II study of liposomal cisplatin (Lipoplatin (TM)) plus gemcitabine versus cisplatin plus gemcitabine as first line treatment in inoperable (stage IIIB/ IV) non‑small cell lung cancer. Lung Cancer 2010; 68(2): 240– 247. doi: 10.1016/ j.lungcan.2009.06.017.
43. Zhou J, Zhao WY, Ma X et al. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials 2013; 34(14): 3626– 3638. doi: 10.1016/ j.biomaterials.2013.01.078.
44. North S, Butts C. Vaccination with BLP25 lipsome vaccine to treat non‑small cell lung and prostate cancers. Expert Rev Vaccines 2005; 4(3): 249– 257.
45. Wu YL, Park K, Soo RA et al. INSPIRE: a phase III study of the BLP25 liposome vaccine (L‑ BLP25) in Asian patients with unresectable stage III non‑small cell lung cancer. BMC Cancer 2011; 11: 430. doi: 10.1186/ 1471‑ 2407‑ 11‑ 430.
46. Prudkin L, Behrens C, Liu DD et al. Loss and reduction of Fus1 protein expression is a frequent phenomenon in the pathogenesis of lung cancer. Clin Cancer Res 2008; 14(1): 41– 47. doi: 10.1158/ 1078‑ 0432.CCR‑ 07‑ 1252.
47. Lu C, Stewart DJ, Lee JJ et al. Phase I clinical trial of systemically administered TUSC2(FUS1)‑ nanoparticles mediating functional gene transfer in humans. PLoS One 2012; 7(4): e34833. doi: 10.1371/ journal.pone.0034833.
48. Li SD, Huang L. Targeted delivery of antisense oligodeoxynucleotide and small interference RNA into lung cancer cells. Mol Pharm 2006; 3(5): 579– 588.
49. Saini SS, Klein MA. Targeting cyclin D1 in non‑small cell lung cancer and mesothelioma cells by antisense oligonucleotides. Anticancer Res 2011; 31(11): 3683– 3690.
50. Elzoghby AO, Samy WM, Elgindy NA. Albumin‑based nanoparticles as potential controlled release drug delivery systems. J Control Release 2012; 157(2): 168– 182. doi: 10.1016/ j.jconrel.2011.07.031.
51. Chen Q, Liang C, Wang C et al. An imagable and photothermal „Abraxane‑like“ nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumors. Adv Mater 2015; 27(5): 903– 910. doi: 10.1002/ adma.201404308.
52. Şimşek E, Kiliç MA. Magic ferritin: a novel chemotherapeutic encapsulation bullet. Journal of Magnetism and Magnetic Materials 2005; 293(1): 509– 513.
53. Carbognani P, Rusca M, Romani A et al. Transferrin receptor expression in nonsmall cell lung cancer: histopathologic and clinical correlates. Cancer 1996; 78(1): 178– 179.
54. Heger Z, Skalickova S, Zitka O et al. Apoferritin applications in nanomedicine. Nanomedicine (Lond) 2014; 9(14): 2233– 2245. doi: 10.2217/ nnm.14.119.
55. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target - specific nanoparticles: theory to practice. Pharmacol Rev 2001; 53(2): 283– 318.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2015 Číslo 4
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
- Possibilities of Using Metamizole in the Treatment of Acute Primary Headaches
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
Najčítanejšie v tomto čísle
- Extraoseus Ewing‘s Sarcoma, Primary Affection of Uterine Cervix – Case Report
- Embryonal Tumors with Multilayer Rosettes – Rare Central Nervous System Tumors in Infants
- Potential of Cell‑free Circulating DNA in Diagnosis of Cancer
- Estimated Glomerular Filtration Rate in Oncology Patients before Cisplatin Chemotherapy