Molecular Prognostic Markers and Their Clinical Relevance in Chronic Lymphocytic Leukemia
Authors:
V. Navrkalová 1; B. Kantorová 1; M. Jarošová 2; Š. Pospíšilová 1
Authors place of work:
Interní hematologická a onkologická klinika LF MU a FN Brno2 Hemato‑ onkologická klinika LF UP a FN Olomouc
1
Published in the journal:
Klin Onkol 2015; 28(Supplementum 3): 6-15
doi:
https://doi.org/10.14735/amko20153S6
Summary
Chronic lymphocytic leukemia is the most common leukemia in Western countries affecting particularly elderly adults. Despite the constantly improving therapy options, chronic lymphocytic leukemia is still an incurable disease owing to considerable clinical and biological heterogeneity. Pathogenesis of chronic lymphocytic leukemia is not fully understood; however, aberrant antigenic stimulation, apoptosis deregulation and microenvironmental interactions play a crucial role in disease development. The most important molecular prognostic markers with clinical relevance include mutation status of heavy‑chain immunoglobulin genes (IGHV), presence of cytogenetic aberrations and TP53 and ATM gene mutations. Recent implementation of next generation sequencing technologies has enabled more accurate analysis of both well‑established and novel potential prognostic markers. The most relevant candidates are mutations in SF3B1, NOTCH1 and BIRC3 genes, which are now intensively studied with respect to their clinical importance. The other examined molecular mechanisms of chronic lymphocytic leukemia pathogenesis include deregulation of B‑ cell receptor signalization and abnormal regulation of gene expression by microRNA. The precise characterization of molecular abnormalities improves the risk stratification of chronic lymphocytic leukemia patients, which could possibly benefit from new treatment approaches.
Key words:
chronic lymphocytic leukemia – biological markers – chromosome aberations – mutations – prognosis
This work was supported by the grants IGA MH CZ NT13493-4/2012, NT13576-4/2012, NT13576, AZV MZ ČR No. 15-30015A-4/2015 a 15-31834A-4/2015 a TAČR TE02000058.
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.
Submitted:
30. 7. 2015
Accepted:
4. 8. 2015
Zdroje
1. Hallek M, Cheson BD, Catovsky D et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute‑ Working Group 1996 guidelines. Blood 2008; 111(12): 5446– 5456. doi: 10.1182/ blood‑ 2007‑ 06‑ 093906.
2. Zenz T, Mertens D, Küppers R et al. From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer 2010; 10(1): 37– 50. doi: 10.1038/ nrc2764.
3. Chiorazzi N, Ferrarini M. Cellular origin(s) of chronic lymphocytic leukemia: cautionary notes and additional considerations and possibilities. Blood 2011; 117(6): 1781– 1791. doi: 10.1182/ blood‑ 2010‑ 07‑ 155663.
4. Hamblin TJ, Davis Z, Gardiner A et al. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94(6): 1848– 1854.
5. Damle RN, Wasil T, Fais F et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94(6): 1840– 1847.
6. Agathangelidis A, Darzentas N, Hadzidimitriou A et al. Stereotyped B‑ cell receptors in one‑ third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood 2012; 119(19): 4467– 4475. doi: 10.1182/ blood‑ 2011‑ 11‑ 393694.
7. Döhner H, Stilgenbauer S, Benner A et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343(26): 1910– 1916.
8. Quesada V, Conde L, Villamor N et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 2011; 44(1): 47– 52. doi: 10.1038/ ng.1032.
9. Puente XS, Pinyol M, Quesada V et al. Whole‑ genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011; 475(7354): 101– 105. doi: 10.1038/ nature10113.
10. Fabbri G, Rasi S, Rossi D et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med 2011; 208(7): 1389– 1401. doi: 10.1084/ jem.20110921.
11. Wang L, Lawrence MS, Wan Y et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 2011; 365(26): 2497– 2506. doi: 10.1056/ NEJMoa1109016.
12. D‘Arena G, Musto P. Monoclonal B‑ cell lymphocytosis. Transl Med UniSa 2014; 8: 75– 79.
13. Stilgenbauer S, Sander S, Bullinger L et al. Clonal evolution in chronic lymphocytic leukemia: acquisition of high‑risk genomic aberrations associated with unmutated VH, resistance to therapy, and short survival. Haematologica 2007; 92(9): 1242– 1245.
14. Rossi D, Spina V, Deambrogi C et al. The genetics of Richter syndrome reveals disease heterogeneity and predicts survival after transformation. Blood 2011; 117(12): 3391– 3401. doi: 10.1182/ blood‑ 2010‑ 09‑ 302174.
15. Ghia P, Stamatopoulos K, Belessi C et al. ERIC recommendations on IGHV gene mutational status analysis in chronic lymphocytic leukemia. Leukemia 2007; 21(1): 1– 3.
16. Thorsélius M, Kröber A, Murray F et al. Strikingly homologous immunoglobulin gene rearrangements and poor outcome in VH3-21- using chronic lymphocytic leukemia patients independent of geographic origin and mutational status. Blood 2006; 107(7): 2889– 2894.
17. Stamatopoulos K, Belessi C, Moreno C et al. Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: Pathogenetic implications and clinical correlations. Blood 2007; 109(1): 259– 270.
18. Strefford JC, Sutton LA, Baliakas P et al. Distinct patterns of novel gene mutations in poor‑ prognostic stereotyped subsets of chronic lymphocytic leukemia: the case of SF3B1 and subset #2. Leukemia 2013; 27(11): 2196– 2199. doi: 10.1038/ leu.2013.98.
19. Baliakas P, Hadzidimitriou A, Sutton LA et al. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia 2015; 29(2): 329– 336. doi: 10.1038/ leu.2014.196.
20. Wiestner A, Rosenwald A, Barry TS et al. ZAP‑ 70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 2003; 101(12): 4944– 4951.
21. Scielzo C, Camporeale A, Geuna M et al. ZAP‑ 70 is expressed by normal and malignant human B‑ cell subsets of different maturational stage. Leukemia 2006; 20(4): 689– 695.
22. Rassenti LZ, Huynh L, Toy TL et al. ZAP‑ 70 compared with immunoglobulin heavy‑chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med 2004; 351(9): 893– 901.
23. Deaglio S, Vaisitti T, Aydin S et al. CD38 and ZAP‑ 70 are functionally linked and mark CLL cells with high migratory potential. Blood 2007; 110(12): 4012– 4021.
24. Quiroga MP, Balakrishnan K, Kurtova AV et al. B‑ cell antigen receptor signaling enhances chronic lymphocytic leukemia cell migration and survival: specific targeting with a novel spleen tyrosine kinase inhibitor, R406. Blood 2009; 114(5): 1029– 1037. doi: 10.1182/ blood‑ 2009‑03‑ 212837.
25. Dal Porto JM, Gauld SB, Merrell KT et al. B cell antigen receptor signaling 101. Mol Immunol 2004; 41(6– 7): 599– 613.
26. Burger JA. Inhibiting B‑ cell receptor signaling pathways in chronic lymphocytic leukemia. Curr Hematol Malig Rep 2012; 7(1): 26– 33. doi: 10.1007/ s11899‑ 011‑ 0104‑ z.
27. Mraz M, Chen L, Rassenti LZ et al. miR‑ 150 influences B‑ cell receptor signaling in chronic lymphocytic leukemia by regulating expression of GAB1 and FOXP1. Blood 2014; 124(1): 84– 95. doi: 10.1182/ blood‑ 2013‑ 09‑ 527234.
28. Binet JL, Auquier A, Dighiero G et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer 1981; 48(1): 198– 206.
29. Rai KR, Sawitsky A, Cronkite EP et al. Clinical staging of chronic lymphocytic leukemia. Blood 1975; 46(2): 219– 234.
30. Jarosova M, Urbankova H, Plachy R et al. Gain of chromosome 2p in chronic lymphocytic leukemia: significant heterogeneity and a new recurrent dicentric rearrangement. Leuk Lymphoma 2010; 51(2): 304– 313. doi: 10.3109/ 10428190903518311.
31. Chapiro E, Leporrier N, Radford‑ Weiss I et al. Gain of the short arm of chromosome 2 (2p) is a frequent recurring chromosome aberration in untreated chronic lymphocytic leukemia (CLL) at advanced stages. Leuk Res 2010; 34(1): 63– 68. doi: 10.1016/ j.leukres.2009.03.042.
32. Rinaldi A, Mian M, Kwee I et al. Genome‑ wide DNA profiling better defines the prognosis of chronic lymphocytic leukaemia. Br J Haematol 2011; 154(5): 590– 599. doi: 10.1111/ j.1365‑ 2141.2011.08789.x.
33. Calin GA, Dumitru CD, Shimizu M et al. Frequent deletions and down‑ regulation of micro‑ RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002; 99(24): 15524– 15529.
34. Klein U, Lia M, Crespo M et al. The DLEU2/ miR‑ 15a/ 16- 1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 2010; 17(1): 28– 40. doi: 10.1016/ j.ccr.2009.11.019.
35. Parker H, Rose‑Zerilli MJ, Parker A et al. 13q deletion anatomy and disease progression in patients with chronic lymphocytic leukemia. Leukemia 2011; 25(3): 489– 497. doi: 10.1038/ leu.2010.288.
36. Ouillette P, Erba H, Kujawski L et al. Integrated genomic profiling of chronic lymphocytic leukemia identifies subtypes of deletion 13q14. Cancer Res 2008; 68(4): 1012– 1021. doi: 10.1158/ 0008‑ 5472.CAN‑ 07‑ 3105.
37. Ouillette P, Collins R, Shakhan S et al. The prognostic significance of various 13q14 deletions in chronic lymphocytic leukemia. Clin Cancer Res 2011; 17(21): 6778– 6790. doi: 10.1158/ 1078‑ 0432.CCR‑ 11‑ 0785.
38. Mosca L, Fabris S, Lionetti M et al. Integrative genomics analyses reveal molecularly distinct subgroups of B‑ cell chronic lymphocytic leukemia patients with 13q14 deletion. Clin Cancer Res 2010; 16(23): 5641– 5653. doi: 10.1158/ 1078‑ 0432.CCR‑ 10‑ 0151.
39. Reddy KS. Chronic lymphocytic leukaemia profiled for prognosis using a fluorescence in situ hybridisation panel. Br J Haematol 2006; 132(6): 705– 722.
40. Chena C, Avalos JS, Bezares RF et al. Biallelic deletion 13q14.3 in patients with chronic lymphocytic leukemia: cytogenetic, FISH and clinical studies. Eur J Haematol 2008; 81(2): 94– 99. doi: 10.1111/ j.1600‑ 0609.2008.01086.x.
41. Orlandi EM, Bernasconi P, Pascutto C et al. Chronic lymphocytic leukemia with del13q14 as the sole abnormality: dynamic prognostic estimate by interphase‑ FISH. Hematol Oncol 2013; 31(3): 136– 142. doi: 10.1002/ hon.2032.
42. Matutes E, Oscier D, Garcia‑ Marco J et al. Trisomy 12 defines a group of CLL with atypical morphology: correlation between cytogenetic, clinical and laboratory features in 544 patients. Br J Haematol 1996; 92(2): 382– 388.
43. Landau DA, Carter SL, Stojanov P et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 2013; 152(4): 714– 726. doi: 10.1016/ j.cell.2013.01.019.
44. Kienle DL, Korz C, Hosch B et al. Evidence for distinct pathomechanisms in genetic subgroups of chronic lymphocytic leukemia revealed by quantitative expression analysis of cell cycle, activation, and apoptosis‑associated genes. J Clin Oncol 2005; 23(16): 3780– 3792.
45. Marasca R, Maffei R, Martinelli S et al. Clinical heterogeneity of de novo 11q deletion chronic lymphocytic leukaemia: prognostic relevance of extent of 11q deleted nuclei inside leukemic clone. Hematol Oncol 2013; 31(2): 88– 95. doi: 10.1002/ hon.2028.
46. Ouillette P, Li J, Shaknovich R et al. Incidence and clinical implications of ATM aberrations in chronic lymphocytic leukemia. Genes Chromosomes Cancer 2012; 51(12): 1125– 1132. doi: 10.1002/ gcc.21997.
47. Rossi D, Fangazio M, Rasi S et al. Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild‑type chronic lymphocytic leukemia. Blood 2012; 119(12): 2854– 2862. doi: 10.1182/ blood‑ 2011‑ 12‑ 395673.
48. Delgado J, Espinet B, Oliveira AC et al. Chronic lymphocytic leukaemia with 17p deletion: a retrospective analysis of prognostic factors and therapy results. Br J Haematol 2012; 157(1): 67– 74. doi: 10.1111/ j.1365‑ 2141.2011.09000.x.
49. Tam CS, Shanafelt TD, Wierda WG et al. De novo deletion 17p13.1 chronic lymphocytic leukemia shows significant clinical heterogeneity: the M. D. Anderson and Mayo Clinic experience. Blood 2009; 114(5): 957– 964. doi: 10.1182/ blood‑ 2009‑ 03‑ 210591.
50. Oscier D, Wade R, Davis Z et al. Prognostic factors identified three risk groups in the LRF CLL4 trial, independent of treatment allocation. Haematologica 2010; 95(10): 1705– 1712. doi: 10.3324/ haematol.2010.025338.
51. Zenz T, Kröber A, Scherer K et al. Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long‑term follow‑up. Blood 2008; 112(8): 3322– 3329. doi: 10.1182/ blood‑ 2008‑ 04‑ 154070.
52. Rossi D, Khiabanian H, Spina V et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood 2014; 123(14): 2139– 2147. doi: 10.1182/ blood‑ 2013‑ 11‑ 539726.
53. Gunnarsson R, Mansouri L, Isaksson A et al. Array‑based genomic screening at diagnosis and during follow‑up in chronic lymphocytic leukemia. Haematologica 2011; 96(8): 1161– 1169. doi: 10.3324/ haematol.2010.039768.
54. Rudenko HC, Else M, Dearden C et al. Characterising the TP53- deleted subgroup of chronic lymphocytic leukemia: an analysis of additional cytogenetic abnormalities detected by interphase fluorescence in situ hybridisation and array‑based comparative genomic hybridisation. Leuk Lymphoma 2008; 49(10): 1879– 1886. doi: 10.1080/ 10428190802345902.
55. Haferlach C, Dicker F, Schnittger S et al. Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgV(H) status and immunophenotyping. Leukemia 2007; 21(12): 2442– 2451.
56. Baliakas P, Iskas M, Gardiner A et al. Chromosomal translocations and karyotype complexity in chronic lymphocytic leukemia: a systematic reappraisal of classic cytogenetic data. Am J Hematol 2014; 89(3): 249– 255. doi: 10.1002/ ajh.23618.
57. Jaglowski SM, Ruppert AS, Heerema NA et al. Complex karyotype predicts for inferior outcomes following reduced‑ intensity conditioning allogeneic transplant for chronic lymphocytic leukaemia. Br J Haematol 2012; 159(1): 82– 87. doi: 10.1111/ j.1365‑ 2141.2012.09239.x.
58. Thompson PA, O’Brien SM, Wierda WG A et al. Complex karyotype, rather than del(17p), is associated with inferior outcomes in relapsed or refractory CLL patients treated with Ibrutinib‑based regimens. Blood 2014; 124(21): abstr. doi: 10.1002/ cncr.29566.
59. Stephens PJ, Greenman CD, Fu B et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011; 144(1): 27– 40. doi: 10.1016/ j.cell.2010.11.055.
60. Rausch T, Jones DT, Zapatka M et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 2012; 148(1– 2): 59– 71. doi: 10.1016/ j.cell.2011.12.013.
61. Korbel JO, Campbell PJ. Criteria for inference of chromothripsis in cancer genomes. Cell 2013; 152(6): 1226– 1236. doi: 10.1016/ j.cell.2013.02.023.
62. Lane DP. Cancer. p53, guardian of the genome. Nature 1992; 358(6381): 15– 16.
63. Thomas A, El Rouby S, Reed JC et al. Drug‑induced apoptosis in B‑ cell chronic lymphocytic leukemia: relationship between p53 gene mutation and bcl‑ 2/ bax proteins in drug resistance. Oncogene 1996; 12(5): 1055– 1062.
64. Petitjean A, Mathe E, Kato S et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 2007; 28(6): 622– 629.
65. Robles AI, Harris CC. Clinical outcomes and correlates of TP53 mutations and cancer. Cold Spring Harb Perspect Biol 2010; 2(3). doi: 10.1101/ cshperspect.a001016.
66. Olivier M, Goldgar DE, Sodha N et al. Li‑ Fraumeni and related syndromes: correlation between tumor type, family structure, and TP53 genotype. Cancer Res 2003; 63(20): 6643– 6650.
67. Trbusek M, Smardova J, Malcikova J et al. Missense mutations located in structural p53 DNA‑binding motifs are associated with extremely poor survival in chronic lymphocytic leukemia. J Clin Oncol 2011; 29(19): 2703– 2708. doi: 10.1200/ JCO.2011.34.7872.
68. Zenz T, Eichhorst B, Busch R et al. TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol 2010; 28(29): 4473– 4479. doi: 10.1200/ JCO.2009.27.8762.
69. Malcikova J, Smardova J, Rocnova L et al. Monoallelic and biallelic inactivation of TP53 gene in chronic lymphocytic leukemia: selection, impact on survival, and response to DNA damage. Blood 2009; 114(26): 5307– 5314. doi: 10.1182/ blood‑ 2009‑ 07‑ 234708.
70. Zenz T, Vollmer D, Trbusek M et al. TP53 mutation profile in chronic lymphocytic leukemia: evidence for a disease specific profile from a comprehensive analysis of 268 mutations. Leukemia 2010; 24(12): 2072– 2079. doi: 10.1038/ leu.2010.208.
71. Gonzalez D, Martinez P, Wade R et al. Mutational status of the TP53 gene as a predictor of response and survival in patients with chronic lymphocytic leukemia: results from the LRF CLL4 trial. J Clin Oncol 2011; 29(16): 2223– 2229. doi: 10.1200/ JCO.2010.32.0838.
72. Malcikova J, Stano‑ Kozubik K, Tichy B et al. Detailed analysis of therapy‑driven clonal evolution of TP53 mutations in chronic lymphocytic leukemia. Leukemia 2015; 29(4): 877– 885. doi: 10.1038/ leu.2014.297.
73. Zenz T, Häbe S, Denzel T et al. Detailed analysis of p53 pathway defects in fludarabine‑ refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53- p21 dysfunction, and miR34a in a prospective clinical trial. Blood 2009; 114(13): 2589– 2597. doi: 10.1182/ blood‑ 2009‑ 05‑ 224071.
74. Pospisilova S, Gonzalez D, Malcikova J et al. ERIC recommendations on TP53 mutation analysis in chronic lymphocytic leukemia. Leukemia 2012; 26(7): 1458– 1461. doi: 10.1038/ leu.2012.25.
75. Dreger P, Döhner H, Ritgen M et al. Allogeneic stem cell transplantation provides durable disease control in poor‑ risk chronic lymphocytic leukemia: long‑term clinical and MRD results of the German CLL Study Group CLL3X trial. Blood 2010; 116(14): 2438– 2447. doi: 10.1182/ blood‑ 2010‑ 03‑ 275420.
76. Byrd JC, Brown JR, O‘Brien S et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med 2014; 371(3): 213– 223. doi: 10.1056/ NEJMoa1400376.
77. Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 2013; 14(4): 197– 210.
78. Jiang L, Sheikh MS, Huang Y. Decision Making by p53: life versus death. Mol Cell Pharmacol 2010; 2(2): 69– 77.
79. Taylor AM, Byrd PJ. Molecular pathology of ataxia telangiectasia. J Clin Pathol 2005; 58(10): 1009– 1015.
80. Guarini A, Marinelli M, Tavolaro S et al. ATM gene alterations in chronic lymphocytic leukemia patients induce a distinct gene expression profile and predict disease progression. Haematologica 2012; 97(1): 47– 55. doi: 10.3324/ haematol.2011.049270.
81. Austen B, Skowronska A, Baker C et al. Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion. J Clin Oncol 2007; 25(34): 5448– 5457.
82. Austen B, Powell JE, Alvi A et al. Mutations in the ATM gene lead to impaired overall and treatment‑free survival that is independent of IGVH mutation status in patients with B‑ CLL. Blood 2005; 106(9): 3175– 3182.
83. Skowronska A, Parker A, Ahmed G et al. Biallelic ATM inactivation significantly reduces survival in patients treated on the United Kingdom Leukemia Research Fund Chronic Lymphocytic Leukemia 4 trial. J Clin Oncol 2012; 30(36): 4524– 4532.
84. Skowronska A, Austen B, Powell JE et al. ATM germline heterozygosity does not play a role in chronic lymphocytic leukemia initiation but influences rapid disease progression through loss of the remaining ATM allele. Haematologica 2012; 97(1): 142– 146. doi: 10.3324/ haematol.2011.048827.
85. Best OG, Gardiner AC, Majid A et al. A novel functional assay using etoposide plus nutlin‑3a detects and distinguishes between ATM and TP53 mutations in CLL. Leukemia 2008; 22(7): 1456– 1459. doi: 10.1038/ sj.leu.2405092.
86. Navrkalova V, Sebejova L, Zemanova J et al. ATM mutations uniformly lead to ATM dysfunction in chronic lymphocytic leukemia: application of functional test using doxorubicin. Haematologica 2013; 98(7): 1124– 1131. doi: 10.3324/ haematol.2012.081620.
87. Pettitt AR, Sherrington PD, Stewart G et al. p53 dysfunction in B‑ cell chronic lymphocytic leukemia: inactivation of ATM as an alternative to TP53 mutation. Blood 2001; 98(3): 814– 822.
88. Stankovic T, Stewart GS, Fegan C et al. Ataxia telangiectasia mutated‑ deficient B‑ cell chronic lymphocytic leukemia occurs in pregerminal center cells and results in defective damage response and unrepaired chromosome damage. Blood 2002; 99(1): 300– 309.
89. Byrd JC, Furman RR, Coutre SE et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 2013; 369(1): 32– 42. doi: 10.1056/ NEJMoa1215637.
90. Navrkalova V, Raskova Kafkova L, Divoky V et al. Oxidative stress as a therapeutic perspective for ATM‑ deficient chronic lymphocytic leukemia patients. Haematologica 2015; 100(8): 994– 996. doi:10.3324/ haematol.2015.130260.
91. Calin GA, Ferracin M, Cimmino A et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005; 353(17): 1793– 1801.
92. Zenz T, Mohr J, Eldering E et al. miR‑ 34a as part of the resistance network in chronic lymphocytic leukemia. Blood 2009; 113(16): 3801– 3808. doi: 10.1182/ blood‑ 2008‑ 08‑ 172254.
93. Cimmino A, Calin GA, Fabbri M et al. miR‑ 15 and miR‑ 16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 2005; 102(39): 13944– 13949.
94. Fabbri M, Bottoni A, Shimizu M et al. Association of a microRNA/ TP53 feedback circuitry with pathogenesis and outcome of B‑ cell chronic lymphocytic leukemia. JAMA 2011; 305(1): 59– 67. doi: 10.1001/ jama.2010.1919.
95. Li S, Moffett HF, Lu J et al. MicroRNA expression profiling identifies activated B cell status in chronic lymphocytic leukemia cells. PLoS One 2011; 6(3). doi: 10.1371/ journal.pone.0016956.
96. Cui B, Chen L, Zhang S et al. MicroRNA‑ 155 influences B‑ cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia. Blood 2014; 124(4): 546– 554.
97. Stilgenbauer S, Schnaiter A, Paschka P et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood 2014; 123(21): 3247– 3254. doi: 10.1182/ blood‑ 2014‑ 01‑ 546150.
98. Oscier DG, Rose‑Zerilli MJ, Winkelmann N et al. The clinical significance of NOTCH1 and SF3B1 mutations in the UK LRF CLL4 trial. Blood 2013; 121(3): 468– 475. doi: 10.1182/ blood‑ 2012‑ 05‑ 429282.
99. Rossi D, Bruscaggin A, Spina V et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine‑ refractoriness. Blood 2011; 118(26): 6904– 6908. doi: 10.1182/ blood‑2011‑ 08‑ 373159.
100. Weissmann S, Roller A, Jeromin S et al. Prognostic impact and landscape of NOTCH1 mutations in chronic lymphocytic leukemia (CLL): a study on 852 patients. Leukemia 2013; 27(12): 2393– 2396. doi: 10.1038/ leu.2013.218.
101. Rossi D, Rasi S, Spina V et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood 2013; 121(8): 1403– 1412. doi: 10.1182/ blood‑ 2012‑ 09‑ 458265.
102. Wahl MC, Will CL, Lührmann R. The spliceosome: design principles of a dynamic RNP machine. Cell 2009; 136(4): 701– 718. doi: 10.1016/ j.cell.2009.02.009.
103. Mansouri L, Grabowski P, Degerman S et al. Short telomere length is associated with NOTCH1/ /SF3B1/ TP53 aberrations and poor outcome in newly diag-nosed chronic lymphocytic leukemia patients. Am J Hematol 2013; 88(8): 647– 651. doi: 10.1002/ ajh.23466.
104. Paulsen RD, Soni DV, Wollman R et al. A genome‑ wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol Cell 2009; 35(2): 228– 239. doi: 10.1016/ j.molcel.2009.06.021.
105. Te Raa GD, Derks IA, Navrkalova V et al. The impact of SF3B1 mutations in CLL on the DNA‑ damage response. Leukemia 2015; 29(5): 1133– 1142. doi: 10.1038/ leu.2014.318.
106. Weng AP, Ferrando AA, Lee W et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306(5694): 269– 271.
107. Rossi D, Rasi S, Fabbri G et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood 2012; 1192): 521– 529. doi: 10.1182/ blood‑ 2011‑ 09‑ 379966.
108. Conze DB, Zhao Y, Ashwell JD. Non‑ canonical NF‑ kB activation and abnormal B cell accumulation in mice expressing ubiquitin protein ligase‑ inactive c‑ IAP2. PLoS Biol 2010; 8(10). doi: 10.1371/ journal.pbio.1000518.
109. Rose‑Zerilli MJ, Forster J, Parker H et al. ATM mutation rather than BIRC3 deletion and/ or mutation predicts reduced survival in 11q‑ deleted chronic lymphocytic leukemia: data from the UK LRF CLL4 trial. Haematologica 2014; 99(4): 736– 742. doi: 10.3324/ haematol.2013.098574.
110. Schuh A, Becq J, Humphray S et al. Monitoring chronic lymphocytic leukemia progression by whole genome sequencing reveals heterogeneous clonal evolution patterns. Blood 2012; 120(20): 4191– 4196. doi: 10.1182/ blood‑ 2012‑ 05‑ 433540.
111. Ouillette P, Saiya‑ Cork K, Seymour E et al. Clonal evolution, genomic drivers, and effects of therapy in chronic lymphocytic leukemia. Clin Cancer Res 2013; 19(11): 2893– 2904. doi: 10.1158/ 1078‑ 0432.CCR‑ 13‑ 0138.
112. Damm F, Mylonas E, Cosson A et al. Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov 2014; 4(9): 1088– 1101. doi: 10.1158/ 2159‑ 8290.CD‑ 14‑ 0104.
113. Kikushige Y, Ishikawa F, Miyamoto T et al. Self‑ renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell 2011; 20(2): 246– 259. doi: 10.1016/ j.ccr.2011.06.029.
114. Rawstron AC, Bennett FL, O‘Connor SJ et al. Monoclonal B‑ cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med 2008; 359(6): 575– 583. doi: 10.1056/ NEJMoa075290.
115. Chigrinova E, Rinaldi A, Kwee I et al. Two main genetic pathways lead to the transformation of chronic lymphocytic leukemia to Richter syndrome. Blood 2013; 122(15): 2673– 2682. doi: 10.1182/ blood‑ 2013‑ 03‑ 489518.
116. Puiggros A, Blanco G, Espinet B. Genetic abnormalities in chronic lymphocytic leukemia: where we are and where we go. Biomed Res Int 2014; 2014: 435983. doi: 10.1155/ 2014/ 435983.
117. Gaidano G, Foà R, Dalla‑ Favera R. Molecular pathogenesis of chronic lymphocytic leukemia. J Clin Invest 2012; 122(10): 3432– 3438. doi: 10.1172/JCI64101.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2015 Číslo Supplementum 3
- Spasmolytic Effect of Metamizole
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole in perioperative treatment in children under 14 years – results of a questionnaire survey from practice
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
- Obstacle Called Vasospasm: Which Solution Is Most Effective in Microsurgery and How to Pharmacologically Assist It?
Najčítanejšie v tomto čísle
- Diffuse Large B‑ cell Lymphoma – Modern Diagnostics and Molecularly Targeted Treatment
- Follicular Lymphoma
- Mantle Cell Lymphoma – Cutting‑ edge Diagnostics and Treatment Approaches
- Salvage Treatment and the Role of Transplantation in Lymphomas