#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Occurrence and Antibiotic Resistance of Enterobacteriaceae in Acute Leukemia Patients


Authors: Zatloukalová Simona 1;  Holý Ondřej 1;  Petrželová Jana 2;  Mlynárčik Patrik 2;  Vlčková Jana 1;  Röderová Magdaléna 2;  Horáková Dagmar 1;  Kollárová Helena 1
Authors place of work: Ústav preventivního lékařství, LF UP v Olomouci 1;  Ústav mikrobiologie, LF UP v Olomouci 2
Published in the journal: Klin Onkol 2018; 31(4): 282-288
Category: Original Articles
doi: https://doi.org/10.14735/amko2018282

Summary

Background:

Acute leukemia (AL) is a heterogeneous group of malignant hematopoietic diseases and is divided into two basic types: acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Patients with these diseases are highly immunosuppressed and therefore at a high risk of serious infections. This study aimed to perform active surveillance of enterobacteria, which cause these infections, and to determine their antibiotic resistance in patients with AL who were hospitalized at the Hemato-Oncology Center of University Hospital Olomouc.

Materials and methods:

This study involved 49 patients with AL, of whom 37 had AML (16 women and 21 men) and 12 had ALL (6 women and 6 men). The mean age of the patients was 50.5 years. Samples of clinical material were obtained over 12 months (September 2015 to August 2016) and subjected to standard microbiological examinations. Bacterial strains were identified by MALDI-TOF MS, and their antibiotic susceptibility was established by microdilution method.

Results:

A total of 292 samples were obtained from patients with AL. Some of these samples were excluded from analysis to prevent the inclusion of identical strains from the same patient. Consequently, 146 clinical samples obtained from the following nine types of clinical materials were analyzed – throat swabs (n = 47), stools (n = 40), urine (n = 33), hemocultures (n = 11), buccal swabs (n = 5), perianal swabs (n = 4), wound swabs (n = 3), sputum (n = 2), and puncture fluid (n = 1). The most prevalent enterobacteria was Escherichia coli (n = 42), followed by Klebsiella spp. (n = 46), specifically Klebsiella pneumoniae (n = 34) and Klebsiella oxytoca (n = 12), and Enterobacter cloacae (n = 19). The most of enterobacteria were highly resistant to many tested antibiotics.

Conclusions:

Antibiotic-resistant enterobacteria colonize patients with hemato-oncological diseases and can cause serious infections. These antibiotic-resistant microorganisms are a serious and frequent problem. These findings together with the high level of immunosuppression mean that patients with hemato-oncological diseases are at a high risk of developing serious infections and consequently active surveillance is crucial.

Keywords:

leukemia – Enterobacteriaceae – antibacterial drug resistance – cross infections

This study was supported by „Research Support Foundation Vaduz – Comprehensive Study at the Issue of Oncological Diseases“ a IGA_LF_ UP_2016_022.

The authors declare they have no potential confl icts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.

Submitted: 28. 11. 2017

Accepted: 28. 5. 2018


Zdroje

2. Šálek C. Diagnostika a léčba akutních leukemií. Intern Med 2012; 14 (10): 366–372.

3. Novotvary 2015. Úřad zdravotnických informací a statistiky České republiky. [online]. Dostupné na: www: http: //www.uzis.cz/publikace/novotvary-2015.

4. Folber F, Hrabovský Š, Doubek M. Akutní lymfoblastická leukemie dospělých. Onkologie 2015; 9 (3): 125–127.

5. Starý J. Akutní leukémie u dětí. Onkologie 2010; 4 (2): 120–124.

6. Karas M. Akutní myeloidní leukémie u nemocných nad 60 let, možnosti její léčby a potenciální role alogenní transplantace krvetvorných buněk. Onkologie 2011; 5 (2): 91–95.

7. Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet 2008; 371 (9617): 1030–1043. doi: 10.1016/S0140-6736 (08) 60457-2.

8. Lo-Coco F, Fouad TM, Ramadan SM. Acute leukaemia in women. Womens Health 2010; 6 (2): 239–249. doi: 10.2217/whe.10.4.

9. Bertuccio P, Bosetti C, Malvezzi M et al. Trends in mortality from leukaemia in Europe: An update to 2009 and projection to 2012. Int J Cancer 2013; 132 (2): 427–436. doi: 10.1002/ijc.27624.

10. Malvezzi M, Carioli G, Bertuccio P et al. European cancer mortality predictions for the year 2016 with focus on leukaemias. Ann Oncol 2016; 27 (4): 725–731.

11. Bodey GP. Managing Infections in the Immunocompromised Patient. Clin Infect Dis 2005; 40 (Suppl 4): S239. doi: 10.1086/427328.

12. Cetkovský P. Horečka neznámého původu u granulocytopenických nemocných (tzv. febrilní neutropenie). Klin Farmakol Farm 2007; 21 (2): 67–73.

13. Cohen J. Infection in the immunocompromised host. In: Warrel DA, Cox TM, Firth JD (eds). Oxford Textbook of Medicine [monograph on the internet]. Oxford: Oxford University Press; 2012. Available from: http: //oxfordmedicine.com/view/10.1093/med/9780199204854.001.1/med-9780199204854-chapter-070204.

14. Cooper JD, Kethireddy S, Kumar A. Infections in the Immunosuppressed and Immunocompromised Patient. ICU Management 2015; 15 (3).

15. Matoušková I, Holý O. Bakteriální kontaminace vnitřního vzduchu transplantační jednotky. Epidemiol Mikrobiol Imunol 2013; 62 (4): 153–159.

16. Kolář M, Htoutou-Sedláková M, Hanulík V. Multirezistentní gramnegativní bakterie i hematoonkologicky nemocných. Postgrad Med 2012; 14 (5): 6–10.

17. Holý O, Matoušková I, Raida L. Výskyt gramnegativních bakterií v prostředí transplantační jednotky Hemato-onkologické kliniky Olomouc. Epidemiol Mikrobiol Imunol 2012; 61 (4): 103–109.

18. Sauer S, Friewald A, Maier T et al. Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS One 2008; 3 (7): e2843. doi: 10.1371/journal.pone.0002843.

19. Abdollahi A, Hakimi F, Doomanlou M et al. Microbial and antibiotic susceptibility profile among clinical samples of patients with acute leukemia. Int J Hematol Oncol Stem Cell Res 2016; 10 (2): 61–69.

20. Hrabák J, Chudáčková E, Walková R. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spektrometry for detection of antibiotic resistence mechanisms: from research to routine diag-nosis. Clin Microbiol Rev 2013; 26 (1): 103–114. doi: 10.1128/CMR.00058-12.

21. Ruhnke M, Arnold R, Gastmeier P. Infection control issues in patients with haematological malignancies in the era of multidrug-resistant bacteria. Lancet Oncol 2014; 15 (13): e606–e619. doi: 10.1016/S1470-2045 (14) 70344-4.

22. Kolář M, Urbánek K, Hanulík V et al. Vliv antibiotické léčby na vývoj bakteriální rezistence. Klin Farmakol Farm 2011; 24 (4): 181–183.

23. Peleg AY, Hooper DC. Hospital-Acquired Infections Due to Gram-negative Bacteria. N Engl J Med 2010; 362 (19): 1804–1813. doi: 10.1056/NEJMra0904124.

24. Khan HA, Ahmad A, Mehboob R. Nosocomial infections and their control strategies. Asian Pac J Trop Biomed 2015; 5 (7): 509–514. doi: 10.1016/j.apjtb.2015.05.001.

25. Madappa T. Escherichia coli (E coli) infections. [online]. Available from: https: //emedicine.medscape.com/article/217485-overview.

26. Taj M, Farzana T, Shah T et al. Clinical and microbiological profile of pathogens in febrile neutropenia in hematological malignancies: a single center prospective analysis. J Oncol 2015; 2015: 596504. doi: 10.1155/2015/596504.

27. Chen CY. Tsay W, Tang JL et al. Epidemiology of bloodstream infections in patients with haematological malignancies with and without neutropenia. Epidemiol Infect 2010; 138 (7): 1044–1051. doi: 10.1017/S0950 268809991208.

28. Hansen DS, Hazel MA, Abiola T et al. Recommended test panel for differentiation of klebsiella species on the basis of a trilateral interlaboratory evaluation of 18 biochemical tests. J Clin Microbiol 2004; 42 (8): 3665–3669. doi: 10.1128/JCM.42.8.3665-3669.2004.

29. Chou HC, Lee CZ, Li-chen MA et al. Isolation of a chromosomal region of klebsiella pneumoniae associated with allantoin metabolism and liver infection. Infect Immun 2004; 72 (7): 3783–3792. doi: 10.1128/IAI.72.7.3783-3792.2004.

30. Hádžić S, Čustović A, Smajlović J et al. Distribution of nosocomial infections caused by Klebsiella pneumoniae ESBL strain. J Environ Occup Sci 2012; 1 (3): 141–146. doi: 10.5455/jeos.20121205084327.

31. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998; 11 (4): 589–603.

32. Marra AR, Wey SB, Castelo A et al. Nosocomial bloodstream infections caused by Klebsiella pneumoniae: impact of extended-spectrum beta-lactamase (ESBL) production on clinical outcome in a hospital with high ESBL prevalence. BMC Inf Dis 2006; 6: 24. doi: 10.1186/1471-2334-6-24.

33. Qutreshi S. Klebsiela Infections. [online]. Available from: https: //emedicine.medscape.com/article/219907- overview.

34. Fraser S. Enterobacter Infections. [online]. Available from: https: //emedicine.medscape.com/article/216845- overview.

35. Gustinetti G, Mikulska M. Bloodstream infections in neutropenic cancer patients: A practical update. Virulence 2016; 7 (3): 280–297. doi: 10.1080/21505594.2016.1156821.

36. Ram R, Farbman L, Leibovici L et al. Characteristics of initial compared with subsequent bacterial infections among hospitalised haemato-oncological patients. Int J Antimicrob Agents 2012; 40 (2): 123–126. doi: 10.1016/j.ijantimicag.2012.05.001.

37. Tomblyn M, Chiller T, Einsele H et al. Guidelines for preventing infectious complications among hematopoietic cell transplant recipients: a global perspective recommendations. Biol Blood Marrow Transplant 2009; 15 (10): 1143–1238. doi: 10.1016/j.bbmt.2009.06.019.

38. Trecarichi EM, Pagano L, Candoni A et al. Current epidemiology and antimicrobial resistence data for bacterial bloodstream infections in patients with hematologic malignancies: an Italian multicentre prospective study. Clin Microbiol Infect 2015; 21 (4): 337–343. doi: 10.1016/j.cmi.2014.11.022.

39. Matoušková I, Holý O. Monitoring of the environment at the transplant unit – hemato-oncology clinic. Int J Environ Res Publ Health 2014; 11 (9): 9480–9490. doi: 10.3390/ijerph110909480.

40. Ma J, Ning LI, Liu YY et al. Antimicrobial resistance patterns, clinical features, and risk factors for septic shock and death of nosocomial E. coli bacteremia in adult patients with hematological disease: a monocenter retrospective study in China. Medicine 2017; 96 (21): e6959. doi: 10.1097/MD.0000000000006959.

41. Bow EJ. Fluoroquinolones, antimicrobial resistance and neutropenic cancer patients. Curr Opin Infect Dis 2011; 24 (6): 545–553. doi: 10.1097/QCO.0b013e32834cf054.

42. Ariza-Heredia EJ, Chemaly RF. Infection control practices in patients with hematological malignancies and multidrug resistant organisms: special considerations and challenges. Clin Lymphoma Myeloma Leuk 2014; 14 (Suppl): S104–S110. doi: 10.1016/j.clml.2014.06.021.

43. Holý O, Matoušková I. The importance of cleanrooms for the treatment of haemato-oncological patients. Wspolczesna Onkol 2012; 16 (3): 266–272. doi: 10.5114/wo.2012.29298.

44. Matoušková I, Raida L, Holý O. Výskyt gramnegativních nefermentujících bakterií v prostředí transplantační jednotky Hemato-onkologické kliniky FN Olomouc. Epidemiol Mikrobiol Imunol 2012; 61 (4): 110–115.

45. Doubek M, Mayer J (eds). Postupy diagnostiky a léčby leukemií a jejich infekčních komplikací u dospělých pacientů: doporučení České leukemické skupiny – pro život (CELL) [monografie na internetu]. Česká leukemická skupina – pro život; 2013. Dostupné na: http: //www.hematology.cz/doporuceni/klinika-files/guidelines_cell_2013.pdf.

46. Kapounová G. Ošetřovatelství v intenzivní péči. Praha: Grada Publishing 2007.

Štítky
Paediatric clinical oncology Surgery Clinical oncology

Článok vyšiel v časopise

Clinical Oncology

Číslo 4

2018 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#