The development and significance of microRNA sequence variants in carcinogenesis
Authors:
Mgr. Pifková Lucie 1; Mgr. Veselá Petra 1; prof. RNDr. Slabý Ondřej, Ph.D. 1,2
Authors place of work:
Středoevropský technologický institut, MU Brno
1; MOÚ Brno
2
Published in the journal:
Klin Onkol 2021; 34(1): 20-25
Category:
Review
doi:
https://doi.org/10.48095/ccko202120
Summary
Background: MicroRNA (miRNA) are a class of short non-coding RNAs that regulate gene expression at the posttranscriptional level. They are involved in key cellular processes and development as well as progression of many diseases. Their levels reflect the physiological state of organisms; therefore, the expression profiles of these molecules are analyzed in biomarker studies. Due to their properties, miRNA appear to be promising diagnostic, prognostic and predictive biomarkers of cancer. Recent studies indicate the existence of sequence variants in miRNA, so-called isomiRs, which differ from the annotated miRNAs by altered sequences due to posttranscriptional modifications. These isomiRs may have a higher abundance than canonical miRNA. The characterization of isomiRs reveals their regulated distribution and different biological properties and thus suggest the possible biological significance of the modifications. The presence of isomiRs can also significantly affect the results of biomarker studies. Currently, the research is focused on their possible clinical significance.
Purpose: The aim of this review is to provide an overview of current knowledge about sequence variants in miRNA. The review summarizes the mechanisms of isomiRs biogenesis and describes the effects of sequence heterogeneity on miRNA stability, function and analysis. Subsequently, the role of isomiRs in biomarker studies is discussed.
Keywords:
isomiRs – mikroRNA – sequence variants – diagnostics – biomarkers
Zdroje
1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116 (2): 281–297. doi: 10.1016/s0092-8674 (04) 00045-5.
2. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res 2019; 47: 155–162. doi: 10.1093/nar/gky1141.
3. Lu J, Getz G, Miska EA et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435 (7043): 834–838. doi: 10.1038/nature03702.
4. Calin GA, Liu CG, Sevignani C et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 2004; 101 (32): 11755–11760. doi: 10.1073/pnas.0404432101.
5. Blower PE, Verducci, JS, Lin S et al. MicroRNA expression profiles for the NCI-60 cancer cell panel. Mol Cancer Ther 2007; 6 (5): 1483–1491. doi: 10.1158/1535-7163.MCT-07-0009.
6. Morin RD, O‘Connor MD, Griffith M et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 2008; 18 (4): 610–621. doi: 10.1101/gr.7179508.
7. Guo L, Chen F. A challenge for miRNA: multiple isomiRs in miRNAomics. Gene 2014; 544 (1): 1–7. doi: 10.1016/j.gene.2014.04.039.
8. Fernandez-Valverde SL, Taft RJ, Mattick JS. Dynamic isomiR regulation in Drosophila development. RNA 2010; 16 (10): 1881–1888. doi: 10.1261/rna.2379610.
9. Salem O, Erdem N, Jung J et al. The highly expressed 5‘ isomiR of hsa-miR-140-3p contributes to the tumor--suppressive effects of miR-140 by reducing breast cancer proliferation and migration. BMC Genomics 2016; 17: 566. doi: 10.1186/s12864-016-2869-x.
10. Neilsen CT, Goodall GJ, Bracken CP. IsomiRs – the overlooked repertoire in the dynamic microRNAome. Trends Genet 2012; 28 (11): 544–549. doi: 10.1016/j.tig.2012.07.005.
11. Lewis BP, Shih IH, Jones-Rhoades MW et al. Prediction of mammalian microRNA targets. Cell 2003; 115 (7): 787–798. doi: 10.1016/s0092-8674 (03) 01018-3.
12. Frank F, Sonenberg N, Nagar B. Structural basis for 5‘-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 2010; 465 (7299): 818–822. doi: 10.1038/nature09039.
13. Wu H, Ye C, Ramirez D et al. Alternative processing of primary microRNA transcripts by Drosha generates 5‘ end variation of mature microRNA. PLoS One 2009; 4 (10): e7566. doi: 10.1371/journal.pone.0007566.
14. Starega-Roslan J, Krol J, Koscianska E et al. Structural basis of microRNA length variety. Nucleic Acids Res 2011; 39 (1): 257–268. doi: 10.1093/nar/gkq727.
15. Lee Y, Ahn C, Han J et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425 (6956): 415–419. doi: 10.1038/nature01957.
16. Hutvágner G, McLachlan J, Pasquinelli AE et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001; 293 (5531): 834–838. doi: 10.1126/science.1062961.
17. Starega-Roslan J, Koscianska E, Kozlowski P et al. The role of the precursor structure in the biogenesis of microRNA. Cell Mol Life Sci 2011; 68 (17): 2859–2871. doi: 10.1007/s00018-011-0726-2.
18. Gu S, Jin L, Zhang Y et al. The loop position of shRNAs and pre-miRNAs is critical for the accuracy of dicer processing in vivo. Cell 2012; 151 (4): 900–911. doi: 10.1016/j.cell.2012.09.042.
19. Fukunaga R, Han BW, Hung JH et al. Dicer partner proteins tune the length of mature miRNAs in flies and mammals. Cell 2012; 151 (4): 912. doi: 10.1016/j.cell.2012; 10.029.
20. Ameres SL, Zamore PD. Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 2013; 14 (8): 475–488. doi: 10.1038/nrm3611.
21. Liang T, Yu J, Liu C et al. IsomiR expression patterns in canonical and Dicer-independent microRNAs. Mol Med Rep 2017; 15 (3): 1071–1078. doi: 10.3892/mmr.2017.6117.
22. Han BW, Hung JH, Weng Z et al. The 3‘-to-5‘ exoribonuclease Nibbler shapes the 3‘ ends of microRNAs bound to Drosophila Argonaute1. Curr Biol 2011; 21 (22): 1878–1887. doi: 10.1016/j.cub.2011.09.034.
23. Wyman SK, Knouf EC, Parkin RK et al. Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome Res 2011; 21 (9): 1450–1461. doi: 10.1101/gr.118059.110.
24. Yang W, Chendrimada TP, Wang Q et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 2006; 13 (1): 13–21. doi: 10.1038/nsmb1041.
25. Kawahara Y, Zinshteyn B, Chendrimada TP et al. RNA editing of the microRNA-151 precursor blocks cleavage by the Dicer-TRBP complex. EMBO Rep 2007; 8 (8): 763–769. doi: 10.1038/sj.embor.7401011.
26. Heo I, Joo C, Kim YK et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through premicroRNA uridylation. Cell 2009; 138 (4): 696–708. doi: 10.1016/j.cell.2009.08.002.
27. Heo I, Ha M, Lim J et al. Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell 2012; 151 (3): 521–532. doi: 10.1016/j.cell.2012.09.022.
28. Koppers-Lalic D, Hackenberg M, Bijnsdorp IV et al. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep 2014; 8 (6): 1649–1658. doi: 10.1016/j.celrep.2014.08.027.
29. Bail S, Swerdel M, Liu H et al. Differential regulation of microRNA stability. RNA 2010; 16 (5): 1032–1039. doi: 10.1261/rna.1851510.
30. Rissland OS, Hong SJ, Bartel DP. MicroRNA destabilization enables dynamic regulation of the miR-16 family in response to cell-cycle changes. Mol Cell 2011; 43 (6): 993–1004. doi: 10.1016/j.molcel.2011.08.021.
31. Katoh T, Sakaguchi Y, Miyauchi K et al. Selective stabilization of mammalian microRNAs by 3‘ adenylation mediated by the cytoplasmic poly (A) polymerase GLD-2. Genes Dev 2009; 23 (4): 433–438. doi: 10.1101/gad.1761509.
32. Jones MR, Quinton LJ, Blahna MT et al. Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat Cell Biol 2009; 11 (9): 1157–1163. doi: 10.1038/ncb1931.
33. Martin HC, Wani S, Steptoe AL et al. Imperfect centered miRNA binding sites are common and can mediate repression of target mRNAs. Genome Biol 2014; 15 (3): R51. doi: 10.1186/gb-2014-15-3-r51.
34. Shin C, Nam JW, Farh KK et al. Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell 2010; 38 (6): 789–802. doi: 10.1016/j.molcel.2010.06.005.
35. Burroughs AM, Ando Y, de Hoon MJ et al. A comprehensive survey of 3‘ animal miRNA modification events and a possible role for 3‘ adenylation in modulating miRNA targeting effectiveness. Genome Res 2010; 20 (10): 1398–1410. doi: 10.1101/gr.106054.110.
36. Cloonan N, Wani S, Xu Q et al. MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol 2011; 12 (12): R126. doi: 10.1186/gb-2011-12-12-r126.
37. Azuma-Mukai A, Oguri H, Mituyama T et al. Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing. Proc Natl Acad Sci USA 2008; 105 (23): 7964–7969. doi: 10.1073/pnas.0800334105.
38. Burroughs AM, Ando Y, de Hoon MJ et al. Deep-sequencing of human Argonaute-associated small RNAs provides insight into miRNA sorting and reveals Argonaute association with RNA fragments of diverse origin. RNA Biol 2011; 8 (1): 158–177. doi: 10.4161/rna.8.1.14300.
39. Rand TA, Petersen S, Du F et al. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 2005; 123 (4): 621–629. doi: 10.1016/j.cell.2005.10.020.
40. Petri S, Dueck A, Lehmann G et al. Increased siRNA duplex stability correlates with reduced off-target and elevated on-target effects. RNA 2011; 17 (4): 737–749. doi: 10.1261/rna.2348111.
41. Modzelewski AJ, Holmes RJ, Hilz S et al. AGO4 regulates entry into meiosis and influences silencing of sex chromosomes in the male mouse germline. Dev Cell 2012; 23 (2): 251–264. doi: 10.1016/j.devcel.2012.07.003.
42. Leshkowitz D, Horn-Saban S, Parmet Y et al. Differences in microRNA detection levels are technology and sequence dependent. RNA 2013; 19 (4): 527–538. doi: 10.1261/rna.036475.112.
43. Magee R, Telonis AG, Cherlin T et al. Assessment of isomiR discrimination using commercial qPCR methods. Non-coding RNA 2017; 3 (2): 18. doi: 10.3390/ncrna3020018.
44. Honda S, Kirino Y. Dumbbell-PCR: a method to quantify specific small RNA variants with a single nucleotide resolution at terminal sequences. Nucleic Acids Res 2015; 43 (12): e77. doi: 10.1093/nar/gkv218.
45. Chugh P, Dittmer DP. Potential pitfalls in microRNA profiling. Wiley Interdiscip Rev DNA 2012; 3 (5): 601–616. doi: 10.1002/wrna.1120.
46. Lee LW, Zhang S, Etheridge A et al. Complexity of the microRNA repertoire revealed by next-generation sequencing. RNA 2010; 16 (11): 2170–2180. doi: 10.1261/rna.2225110.
47. Wu CW, Evans JM, Huang S et al. A comprehensive approach to sequence-oriented IsomiR annotation (CASMIR): demonstration with IsomiR profiling in colorectal neoplasia. BMC Genomics 2018; 19 (1): 401. doi: 10.1186/s12864-018-4794-7.
48. Koppers-Lalic D, Hackenberg M, de Menezes R et al. Non-invasive prostate cancer detection by measuring miRNA variants (isomiRs) in urine extracellular vesicles. Oncotarget 2016; 7 (16): 22566–22578. doi: 10.18632/oncotarget.8124.
49. Schamberger A, Orbán TI. 3‘ IsomiR species and DNA contamination influence reliable quantification of microRNAs by stem-loop quantitative PCR. PLoS One 2014; 9 (8): e106315. doi: 10.1371/journal.pone.0106315.
50. Nassirpour R, Mathur S, Gosink MM et al. Identification of tubular injury microRNA biomarkers in urine: comparison of next-generation sequencing and qPCR-based profiling platforms. BMC Genomics 2014; 15 (1): 485. doi: 10.1186/1471-2164-15-485.
51. Pantano L, Estivill X, Martí E. SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells. Nucleic Acids Res 2010; 38 (5): e34. doi: 10.1093/nar/gkp1127.
52. Shi J, Dong M, Li L et al. mirPRo-a novel standalone program for differential expression and variation analysis of miRNAs. Sci Rep 2015; 5: 14617. doi: 10.1038/srep14617.
53. Zhang Y, Zang Q, Zhang H et al. DeAnnIso: a tool for online detection and annotation of isomiRs from small RNA sequencing data. Nucleic Acids Res 2016; 44 (W1): W166–175. doi: 10.1093/nar/gkw427.
54. Urgese G, Paciello G, Acquaviva A et al. isomiR-SEA: an RNA-Seq analysis tool for miRNAs/isomiRs expression level profiling and miRNA-mRNA interaction sites evaluation. BMC Bioinf 2016; 17: 148. doi: 10.1186/s12859-016-0958-0.
55. De Oliveira LF, Christoff AP, Margis R. isomiRID: a framework to identify microRNA isoforms. Bioinformatics 2013; 29 (20): 2521–2523. doi: 10.1093/bioinformatics/btt424.
56. Desvignes T, Loher P, Eilbeck K et al. Unification of miRNA and isomiR research: the mirGFF3 format and the mirtop API. Bioinformatics 2020; 36 (3): 698–703. doi: 10.1093/bioinformatics/btz675.
57. Hinton A, Hunter SE, Afrikanova I et al. sRNA-seq analysis of human embryonic stem cells and definitive endoderm reveals differentially expressed microRNAs and novel IsomiRs with distinct targets. Stem cells 2014; 32 (9): 2360–2372. doi: 10.1002/stem.1739.
58. Shoshan E, Mobley AK, Braeuer RR et al. Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis. Nat Cell Biol 2015; 17 (3): 311–321. doi: 10.1038/ncb3110.
59. Watahiki A, Wang Y, Morris J et al. MicroRNAs associated with metastatic prostate cancer. PLoS One 2011; 6 (9): e24950. doi: 10.1371/journal.pone.0024950.
60. Zhang H, Yang S, Guo L et al. Comparisons of isomiR patterns and classification performance using the rank-based MANOVA and 10-fold crossvalidation. Gene 2015; 569 (1): 21–26. doi: 10.1016/j.gene.2014.11.026.
61. Wang Y, Xu X, Yu S et al. Systematic characterization of A-to-I RNA editing hotspots in microRNAs across human cancers. Genome Res 2017; 27 (7): 1112–1125. doi: 10.1101/gr.219741.116.
62. Hu X, Macdonald DM, Huettner PC et al. A miR-200 microRNA cluster as prognostic marker in advanced ovarian cancer. Gynecol Oncol 2009; 114 (3): 457–464. doi: 10.1016/j.ygyno.2009.05.022.
63. Telonis AG, Magee R, Loher P et al. Knowledge about the presence or absence of miRNA isoforms (isomiRs) can successfully discriminate amongst 32 TCGA cancer types. Nucleic Acids Res 2017; 45 (6): 2973–2985. doi: 10.1093/nar/gkx082.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2021 Číslo 1
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
- Possibilities of Using Metamizole in the Treatment of Acute Primary Headaches
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
Najčítanejšie v tomto čísle
- Breast cancer rehabilitation
- Germline mutations in RAD51C and RAD51D and hereditary predisposition to ovarian cancer
- Droplet digital PCR as a novel diagnostic tool
- Squamous cell rectal cancer in a young woman