Metabolic plasticity of cancer cells
Authors:
M. Raudenská 1; B. Peltanová 2; K. Hönigová 2; J. Navrátil 2; M. Masařík 1,2
Authors‘ workplace:
Fyziologický ústav, LF MU Brno
1; Ústav patologické fyziologie, LF MU Brno
2
Published in:
Klin Onkol 2022; 35(3): 195-207
Category:
Review
doi:
https://doi.org/10.48095/ccko2022195
Overview
Background: A general characteristic of cancer metabolism is the skill to gain the essential nutrients from a relatively poor environment and use them effectively to maintain viability and create new biomass. The changes in intracellular and extracellular metabolites that accompany metabolic reprogramming associated with tumor growth subsequently affect gene expression, cell differentiation, and tumor microenvironment. During carcinogenesis, cancer cells face huge selection pressures that force them to constantly optimize dominant metabolic pathways and undergo major metabolic reorganizations. In general, greater flexibility of metabolic pathways increases the ability of tumor cells to satisfy their metabolic needs in a changing environment. Purpose: In this review, we discuss the metabolic properties of cancer cells and describe the tumor promoting effect of the transformed metabolism. We assume that changes in metabolism are significant enough to facilitate tumorigenesis and may provide interesting targets for cancer therapy.
Keywords:
Metabolism – Warburg effect – cancer – glutaminolysis – anaplerosis – Krebs cycle – oncogenesis – oncometabolite
Sources
1. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab 2016; 23 (1): 27–47. doi: 10.1016/j.cmet.2015.12.006.
2. Bradley J, Swann K. Mitochondria and lipid metabolism in mammalian oocytes and early embryos. Int J Dev Biol 2019; 63 (3–4–5): 93–103. doi: 10.1387/ijdb.180355ks.
3. Johnson MT, Mahmood S, Patel MS. Intermediary metabolism and energetics during murine early embryogenesis. J Biol Chem 2003; 278 (34): 31457–31460. doi: 10.1074/jbc.R300002200.
4. Folmes CDL, Dzeja PP, Nelson TJ et al. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 2012; 11 (5): 596–606. doi: 10.1016/j.stem.2012.10.002.
5. Warburg O. Über den Stoffwechsel der Carcinomzelle. Naturwissenschaften 1924; 12 (50): 1131–1137.
6. Warburg O. On respiratory impairment in cancer cells. Science 1956; 124 (3215): 269–270.
7. Tan AS, Baty JW, Dong LF et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab 2015; 21 (1): 81–94. doi: 10.1016/j.cmet.2014.12.003.
8. Wallace DC. Mitochondria and cancer. Nat Rev Cancer 2012; 12 (10): 685–698. doi: 10.1038/nrc3365.
9. Ju YS, Alexandrov LB, Gerstung M et al. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. Elife 2014; 3: e02935. doi: 10.7554/eLife.02935.
10. Bajzikova M, Kovarova J, Coelho AR et al. Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells. Cell Metab 2019; 29 (2): 399–416.e10. doi: 10.1016/j.cmet.2018.10.014.
11. Huang CT, Huang DY, Hu CJ et al. Energy adaptive response during parthanatos is enhanced by PD98059 and involves mitochondrial function but not autophagy induction. Biochim Biophys Acta 2014; 1843 (3): 531–543. doi: 10.1016/j.bbamcr.2013.12.001.
12. Naguib A, Mathew G, Reczek CR et al. Mitochondrial complex I inhibitors expose a vulnerability for selective killing of pten-null cells. Cell Rep 2018; 23 (1): 58–67. doi: 10.1016/j.celrep.2018.03.032.
13. Luengo A, Li Z, Gui DY et al. Increased demand for NAD+ relative to ATP drives aerobic glycolysis. Mol Cell 2021; 81 (4): 691–707. doi: 10.1016/j.molcel.2020.12. 012.
14. Li W, Zhang C, Jackson K et al. UCP2 knockout suppresses mouse skin carcinogenesis. Cancer Prev Res (Phila) 2015; 8 (6): 487–491. doi: 10.1158/1940-6207.CAPR-14-0297-T.
15. Kuai XY, Ji ZY, Zhang HJ. Mitochondrial uncoupling protein 2 expression in colon cancer and its clinical significance. World J Gastroenterol 2010; 16 (45): 5773–5778. doi: 10.3748/wjg.v16.i45.5773.
16. Ayyasamy V, Owens KM, Desouki MM et al. Cellular model of Warburg effect identifies tumor promoting function of UCP2 in breast cancer and its suppression by genipin. PLoS One 2011; 6 (9): e24792. doi: 10.1371/journal.pone.0024792.
17. Baffy G. Mitochondrial uncoupling in cancer cells: liabilities and opportunities. Biochim Biophys Acta Bioenerg 2017; 1858 (8): 655–664. doi: 10.1016/j.bbabio.2017.01.005.
18. Stacpoole PW. Therapeutic targeting of the pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase (PDC/PDK) axis in cancer. J Natl Cancer Inst 2017; 109 (11). doi: 10.1093/jnci/djx071.
19. Herst PM, Berridge MV. Plasma membrane electron transport: a new target for cancer drug development. Curr Mol Med 2006; 6 (8): 895–904. doi: 10.2174/156652406779010777.
20. Kernstine KH, Faubert B, Do QN et al. Does tumor FDG-PET avidity represent enhanced glycolytic metabolism in non-small cell lung cancer? Ann Thorac Surg 2020; 109 (4): 1019–1025. doi: 10.1016/j.athoracsur.2019.10. 061.
21. Desai S, Ding M, Wang B et al. Tissue-specific isoform switch and DNA hypomethylation of the pyruvate kinase PKM gene in human cancers. Oncotarget 2014; 5 (18): 8202–8210. doi: 10.18632/oncotarget.1159.
22. Lunt SY, Muralidhar V, Hosios AM et al. Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol Cell 2015; 57 (1): 95–107. doi: 10.1016/j.molcel.2014.10.027.
23. Christofk HR, Vander Heiden MG, Harris MH et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008; 452 (7184): 230–233. doi: 10.1038/nature06734.
24. Mazurek S, Boschek CB, Hugo F et al. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol 2005; 15 (4): 300–308. doi: 10.1016/j.semcancer.2005.04.009.
25. Tong W-H, Rouault TA. Metabolic regulation of citrate and iron by aconitases: role of iron–sulfur cluster biogenesis. Biometals 2007; 20 (3): 549–564. doi: 10.1007/s10534-006-9047-6.
26. Peters JM. Flipping a citrate switch on liver cancer cells. J Biol Chem 2017; 292 (33): 13902–13903. doi: 10.1074/jbc.H117.783860.
27. Moreno M, Ortega F, Xifra G et al. Cytosolic aconitase activity sustains adipogenic capacity of adipose tissue connecting iron metabolism and adipogenesis. FASEB J 2015; 29 (4): 1529–1539. doi: 10.1096/fj.14-258996.
28. Li D, Li Y. The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct Target Ther 2020; 5 (1): 108. doi: 10.1038/s41392-020-00216-5.
29. Shimada K, Hayano M, Pagano NC et al. Cell-line selectivity improves the predictive power of pharmacogenomic analyses and helps identify NADPH as biomarker for ferroptosis sensitivity. Cell Chem Biol 2016; 23 (2): 225–235. doi: 10.1016/j.chembiol.2015.11.016.
30. Stone SC, Rossetti RAM, Alvarez KLF et al. Lactate secreted by cervical cancer cells modulates macrophage phenotype. J Leukoc Biol 2019; 105 (5): 1041–1054. doi: 10.1002/JLB.3A0718-274RR.
31. Fischer K, Hoffmann P, Voelkl S et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 2007; 109 (9): 3812–3819. doi: 10.1182/blood-2006-07-035972.
32. Watson MJ, Vignali PDA, Mullett SJ et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 2021; 591 (7851): 645–651. doi: 10.1038/s41586-020-03045-2.
33. Corbet C, Feron O. Tumour acidosis: from the passenger to the driver‘s seat. Nature Rev Cancer 2017; 17 (10): 577–593. doi: 10.1038/nrc.2017.77.
34. Khacho M, Tarabay M, Patten D et al. Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival. Nature Commun 2014; 5: 3550. doi: 10.1038/ncomms4550.
35. Faubert B, Li KY, Cai L et al. Lactate metabolism in human lung tumors. Cell 2017; 171 (2): 358–371.e9. doi: 10.1016/j.cell.2017.09.019.
36. Damaghi M, Tafreshi NK, Lloyd MC et al. Chronic acidosis in the tumour microenvironment selects for overexpression of LAMP2 in the plasma membrane. Nature Commun 2015; 6: 8752. doi: 10.1038/ncomms9752.
37. Siska P, Singer K, Evert K et al. The immunological Warburg effect: can a metabolic-tumor-stroma score (MeTS) guide cancer immunotherapy? Immunol Rev 2020; 295 (1): 187–202. doi: 10.1111/imr.12846.
38. Chen X-S, Li L-Y, Guan Y-D et al. Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect. Acta Pharmacol Sin 2016; 37 (8): 1013–1019. doi: 10.1038/aps.2016.47.
39. Ganapathy-Kanniappan S, Kunjithapatham R, Geschwind JF. Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting. Anticancer Res 2013; 33 (1): 13–20.
40. Amadori D, Frassineti GL, De Matteis A et al. Modulating effect of lonidamine on response to doxorubicin in metastatic breast cancer patients: results from a multicenter prospective randomized trial. Breast Cancer Res Treat 1998; 49 (3): 209–217. doi: 10.1023/a: 1006063412 726.
41. Nath K, Nelson DS, Heitjan DF et al. Lonidamine induces intracellular tumor acidification and ATP depletion in breast, prostate and ovarian cancer xenografts and potentiates response to doxorubicin. NMR Biomed 2015; 28 (3): 281–290. doi: 10.1002/nbm.3240.
42. Zhang D, Li J, Wang F et al. 2-Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy. Cancer Lett 2014; 355 (2): 176–183. doi: 10.1016/j.canlet.2014.09.003.
43. Mohanti BK, Rath GK, Anantha N et al. Improving cancer radiotherapy with 2-deoxy-D-glucose: phase I/II clinical trials on human cerebral gliomas. Int J Radiat Oncol Biol Phys 1996; 35 (1): 103–111. doi: 10.1016/s0360-3016 (96) 85017-6.
44. Mazur L, Opydo-Chanek M, Stojak M. Glufosfamide as a new oxazaphosphorine anticancer agent. Anticancer Drugs 2011; 22 (6): 488–493. doi: 10.1097/ CAD.0b013e328345e1e0.
45. Dyshlovoy SA, Pelageev DN, Hauschild J et al. Successful targeting of the Warburg effect in prostate cancer by glucose-conjugated 1,4-naphthoquinones. Cancers 2019; 11 (11): 1690. doi: 10.3390/cancers11111690.
46. Narayanan K, Erathodiyil N, Gopalan B et al. Targeting Warburg effect in cancers with PEGylated glucose. Adv Healthc Mater 2016; 5 (6): 696–701. doi: 10.1002/adhm.201500613.
47. Patra M, Johnstone TC, Suntharalingam K et al. A potent glucose–platinum conjugate exploits glucose transporters and preferentially accumulates in cancer cells. Angew Chem Int Ed Engl 2016; 55 (7): 2550–2554. doi: 10.1002/anie.201510551.
48. Woźniak M, Pastuch-Gawołek G, Makuch S et al. In vitro and in vivo efficacy of a novel glucose–methotrexate conjugate in targeted cancer treatment. Int J Mol Sci 2021; 22 (4): 1748. doi: 10.3390/ijms22041748.
49. Nishie H, Kataoka H, Yano S et al. Excellent antitumor effects for gastrointestinal cancers using photodynamic therapy with a novel glucose conjugated chlorin e6. Biochem Biophys Res Commun 2018; 496 (4): 1204–1209. doi: 10.1016/j.bbrc.2018.01.171.
50. Liu J, Wu N, Ma L et al. Oleanolic acid suppresses aerobic glycolysis in cancer cells by switching pyruvate kinase type M isoforms. PLoS One 2014; 9 (3): e91606. doi: 10.1371/journal.pone.0091606.
51. Urbańska K, Orzechowski A. Unappreciated role of LDHA and LDHB to control apoptosis and autophagy in tumor cells. Int J Mol Sci 2019; 20 (9): 2085. doi: 10.3390/ijms20092085.
52. Granchi C, Paterni I, Rani R et al. Small-molecule inhibitors of human LDH5. Future Med Chem 2013; 5 (16): 1967–1991. doi: 10.4155/fmc.13.151.
53. Kim E-Y, Chung T-W, Han CW et al. A novel lactate dehydrogenase inhibitor, 1- (phenylseleno) -4- (trifluoromethyl) benzene, suppresses tumor growth through apoptotic cell death. Sci Rep 2019; 9 (1): 3969. doi: 10.1038/s41598-019-40617-3.
54. Le A, Cooper CR, Gouw AM et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A 2010; 107 (5): 2037–2042. doi: 10.1073/pnas.0914433107.
55. Hatzivassiliou G, Zhao F, Bauer DE et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 2005; 8 (4): 311–321. doi: 10.1016/j.ccr.2005.09. 008.
56. Granchi C. ATP citrate lyase (ACLY) inhibitors: an anti-cancer strategy at the crossroads of glucose and lipid metabolism. Eur J Med Chem 2018; 157: 1276–1291. doi: 10.1016/j.ejmech.2018.09.001.
57. Lyssiotis CA, Cantley LC. Acetate fuels the cancer engine. Cell 2014; 159 (7): 1492–1494. doi: 10.1016/ j.cell.2014.12.009.
58. Wise DR, Ward PS, Shay JE et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of a-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A 2011; 108 (49): 19611–19616. doi: 10.1073/pnas.1117773108.
59. Davidson SM, Papagiannakopoulos T, Olenchock BA et al. Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer. Cell Metab 2016; 23 (3): 517–528. doi: 10.1016/j.cmet.2016.01.007.
60. Mycielska ME, Dettmer K, Rümmele P et al. Extracellular citrate affects critical elements of cancer cell metabolism and supports cancer development in vivo. Cancer Res 2018; 78 (10): 2513–2523. doi: 10.1158/0008-5472.CAN-17-2959.
61. Marin-Valencia I, Yang C, Mashimo T et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab 2012; 15 (6): 827–837. doi: 10.1016/j.cmet.2012.05.001.
62. Drexler K, Schmidt KM, Jordan K et al. Cancer-associated cells release citrate to support tumour metastatic progression. Life Sci Alliance 2021; 4 (6): e202000903. doi: 10.26508/lsa.202000903.
63. Raudenská M, Svobodová M, Gumulec J et al. The importance of cancer-associated fibroblasts in the pathogenesis of head and neck cancers. Klin Onkol 2020; 33 (1): 39–48. doi: 10.14735/amko202039.
64. Tasdogan A, Faubert B, Ramesh V et al. Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature 2020; 577 (7788): 115–120. doi: 10.1038/s41586-019-1847-2.
65. Diehl FF, Lewis CA, Fiske BP et al. Cellular redox state constrains serine synthesis and nucleotide production to impact cell proliferation. Nature Metabolism 2019; 1 (9): 861–867. doi: 10.1038/s42255-019-0108-x.
66. Locasale JW, Grassian AR, Melman T et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nature Genetics 2011; 43 (9): 869–874. doi: 10.1038/ng.890.
67. Reid MA, Allen AE, Liu S et al. Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism. Nature Commun 2018; 9 (1): 5442–5442. doi: 10.1038/s41467-018-07868-6.
68. Possemato R, Marks KM, Shaul YD et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 2011; 476 (7360): 346–350. doi: 10.1038/nature10350.
69. Wei X, Shi J, Lin Q et al. Targeting ACLY attenuates tumor growth and acquired cisplatin resistance in ovarian cancer by inhibiting the PI3K–AKT pathway and activating the AMPK–ROS pathway. Front Oncol 2021; 11: 642229. doi: 10.3389/fonc.2021.642229.
70. Koerner SK, Hanai J-I, Bai S et al. Design and synthesis of emodin derivatives as novel inhibitors of ATP-citrate lyase. Eur J Med Chem 2017; 126: 920–928. doi: 10.1016/j.ejmech.2016.12.018.
71. Granchi C. ATP citrate lyase (ACLY) inhibitors: an anti-cancer strategy at the crossroads of glucose and lipid metabolism. Eur J Med Chem 2018; 157: 1276–1291. doi: 10.1016/j.ejmech.2018.09.001.
72. Ki SW, Ishigami K, Kitahara T et al. Radicicol binds and inhibits mammalian ATP citrate lyase. J Biol Chem 2000; 275 (50): 39231–39236. doi: 10.1074/jbc.M006192200.
73. Shibata S, Sogabe S, Miwa M et al. Identification of the first highly selective inhibitor of human lactate dehydrogenase B. Sci Rep 2021; 11 (1): 21353. doi: 10.1038/s41598-021-00820-7.
74. Fiume L, Manerba M, Vettraino M et al. Inhibition of lactate dehydrogenase activity as an approach to cancer therapy. Future Med Chem 2014; 6 (4): 429–445. doi: 10.4155/fmc.13.206.
75. Benjamin D, Robay D, Hindupur SK et al. Dual inhibition of the lactate transporters MCT1 and MCT4 is synthetic lethal with metformin due to NAD+ depletion in cancer cells. Cell Rep 2018; 25 (11): 3047–3058.e4. doi: 10.1016/j.celrep.2018.11.043.
76. Corbet C, Bastien E, Draoui N et al. Interruption of lactate uptake by inhibiting mitochondrial pyruvate transport unravels direct antitumor and radiosensitizing effects. Nat Commun 2018; 9 (1): 1208. doi: 10.1038/s41467-018-03525-0.
77. Mullarky E, Xu J, Robin AD et al. Inhibition of 3-phosphoglycerate dehydrogenase (PHGDH) by indole amides abrogates de novo serine synthesis in cancer cells. Bioorg Med Chem Lett 2019; 29 (17): 2503–2510. doi: 10.1016/j.bmcl.2019.07.011.
78. Zhao J-Y, Feng K-R, Wang F et al. A retrospective overview of PHGDH and its inhibitors for regulating cancer metabolism. Eur J Med Chem 2021; 217: 113379. doi: 10.1016/j.ejmech.2021.113379.
79. Nilsson A, Haanstra JR, Engqvist M et al. Quantitative analysis of amino acid metabolism in liver cancer links glutamate excretion to nucleotide synthesis. Proc Nat Acad Sci U S A 2020; 117 (19): 10294–10304. doi: 10.1073/pnas.1919250117.
80. Kodama M, Oshikawa K, Shimizu H et al. A shift in glutamine nitrogen metabolism contributes to the malignant progression of cancer. Nat Commun 2020; 11 (1): 1320. doi: 10.1038/s41467-020-15136-9.
81. Yoo HC, Yu YC, Sung Y et al. Glutamine reliance in cell metabolism. Exp Mol Med 2020; 52 (9): 1496–1516. doi: 10.1038/s12276-020-00504-8.
82. Yoo HC, Park SJ, Nam M et al. A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells. Cell Metab 2020; 31 (2): 267–283.e12. doi: 10.1016/j.cmet.2019.11.020.
83. Stine ZE, Dang CV. Glutamine skipping the Q into mitochondria. Trends Mol Med 2020; 26 (1): 6–7. doi: 10.1016/j.molmed.2019.11.004.
84. Sayin VI, LeBoeuf SE, Singh SX et al. Activation of the NRF2 antioxidant program generates an imbalance in central carbon metabolism in cancer. Elife 2017; 6: e28083. doi: 10.7554/eLife.28083.
85. Murphy TH, Miyamoto M, Sastre A et al. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 1989; 2 (6): 1547–1558. doi: 10.1016/0896-6273 (89) 90043-3.
86. Gao M, Monian P, Quadri N et al. Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 2015; 59 (2): 298–308. doi: 10.1016/j.molcel.2015.06.011.
87. Yang L, Achreja A, Yeung TL et al. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab 2016; 24 (5): 685–700. doi: 10.1016/j.cmet.2016.10.011.
88. Palmieri EM, Menga A, Martín-Pérez R et al. Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis. Cell Rep 2017; 20 (7): 1654–1666. doi: 10.1016/j.celrep.2017.07.054.
89. Wang Z, Liu F, Fan N et al. Targeting glutaminolysis: new perspectives to understand cancer development and novel strategies for potential target therapies. Front Oncol 2020; 10: 589508. doi: 10.3389/fonc.2020.589 508.
90. Lemberg KM, Vornov JJ, Rais R et al. We’re not „DON“ yet: optimal dosing and prodrug delivery of 6-diazo-5-oxo-L-norleucine. Mol Cancer Ther 2018; 17 (9): 1824–1832. doi: 10.1158/1535-7163.MCT-17-1148.
91. Xu X, Meng Y, Li L et al. Overview of the development of glutaminase inhibitors: achievements and future directions. J Med Chem 2019; 62 (3): 1096–1115. doi: 10.1021/acs.jmedchem.8b00961.
92. Marshall AD, van Geldermalsen M, Otte NJ et al. ASCT2 regulates glutamine uptake and cell growth in endometrial carcinoma. Oncogenesis 2017; 6 (7): e367–e367. doi: 10.1038/oncsis.2017.70.
93. Berger RS, Ellmann L, Reinders J et al. Degradation of D-2-hydroxyglutarate in the presence of isocitrate dehydrogenase mutations. Sci Rep 2019; 9 (1): 7436. doi: 10.1038/s41598-019-43891-3.
94. Figueroa ME, Abdel-Wahab O, Lu C et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010; 18 (6): 553–567. doi: 10.1016/j.ccr.2010.11.015.
95. Sulkowski PL, Corso CD, Robinson ND et al. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med 2017; 9 (375): eaal2463. doi: 10.1126/scitranslmed.aal2463.
96. Seok J, Yoon SH, Lee SH et al. The oncometabolite d‑2‑hydroxyglutarate induces angiogenic activity through the vascular endothelial growth factor receptor 2 signaling pathway. Int J Oncol 2019; 54 (2): 753–763. doi: 10.3892/ijo.2018.4649.
97. Wang T-X, Liang J-Y, Zhang C et al. The oncometabolite 2-hydroxyglutarate produced by mutant IDH1 sensitizes cells to ferroptosis. Cell Death Dis 2019; 10 (10): 755. doi: 10.1038/s41419-019-1984-4.
98. Intlekofer AM, Wang B, Liu H et al. L-2-hydroxyglutarate production arises from noncanonical enzyme function at acidic pH. Nat Chem Biol 2017; 13 (5): 494–500. doi: 10.1038/nchembio.2307.
99. Shim EH, Livi CB, Rakheja D et al. L-2-hydroxyglutarate: an epigenetic modifier and putative oncometabolite in renal cancer. Cancer Discov 2014; 4 (11): 1290–1298. doi: 10.1158/2159-8290.CD-13-0696.
100. Krejčíř R, Valík D Vojtěšek B. Mitochondrial processes in targeted cancer therapy. Klin Onkol 2018; 31 (Suppl 2): 14–20. doi: 10.14735/amko20182S14.
101. Oermann EK, Wu J, Guan K-L et al. Alterations of metabolic genes and metabolites in cancer. Semin Cell Dev Biol 2012; 23 (4): 370–380. doi: 10.1016/j.semcdb.2012.01.013.
102. Mu X, Zhao T, Xu C et al. Oncometabolite succinate promotes angiogenesis by upregulating VEGF expression through GPR91-mediated STAT3 and ERK activation. Oncotarget 2017; 8 (8): 13174–13185. doi: 10.18632/oncotarget.14485.
103. Terra X, Ceperuelo-Mallafré V, Merma C et al. Succinate pathway in head and neck squamous cell carcinoma: potential as a diagnostic and prognostic marker. Cancers 2021; 13 (7): 1653. doi: 10.3390/cancers13071 653.
104. Ko SH, Choi GE, Oh JY et al. Succinate promotes stem cell migration through the GPR91-dependent regulation of DRP1-mediated mitochondrial fission. Sci Rep 2017; 7 (1): 12582. doi: 10.1038/s41598-017-12692-x.
105. Ortiz-Masia D, Gisbert Ferrándiz L, Bauset C et al. Succinate activates EMT in intestinal epithelial cells through SUCNR1: a novel protagonist in fistula development. Cells 2020; 9 (5): 1104. doi: 10.3390/cells9051 104.
106. Xiao M, Yang H, Xu W et al. Inhibition of a-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 2012; 26 (12): 1326–1338. doi: 10.1101/gad.191056.112.
107. Tseng PL, Wu WH, Hu TH et al. Decreased succinate dehydrogenase B in human hepatocellular carcinoma accelerates tumor malignancy by inducing the Warburg effect. Sci Rep 2018; 8 (1): 3081. doi: 10.1038/s41598-018-21361-6.
108. Mills E, O’Neill LAJ. Succinate: a metabolic signal in inflammation. Trends Cell Biol 2014; 24 (5): 313–320. doi: 10.1016/j.tcb.2013.11.008.
109. Sciacovelli M, Frezza C. Oncometabolites: unconventional triggers of oncogenic signalling cascades. Free Radic Biol Med 2016; 100: 175–181. doi: 10.1016/j.freeradbiomed.2016.04.025.
110. Schmidt C, Sciacovelli M, Frezza C. Fumarate hydratase in cancer: a multifaceted tumour suppressor. Semin Cell Dev Biol 2020; 98: 15–25. doi: 10.1016/j.semcdb.2019.05.002.
111. Sourbier C, Ricketts CJ, Matsumoto S et al. Targeting ABL1-mediated oxidative stress adaptation in fumarate hydratase-deficient cancer. Cancer Cell 2014; 26 (6): 840–850. doi: 10.1016/j.ccell.2014.10.005.
112. Kerins MJ, Vashisht AA, Liang BX et al. Fumarate mediates a chronic proliferative signal in fumarate hydratase-inactivated cancer cells by increasing transcription and translation of ferritin genes. Mol Cell Biol 2017; 37 (11): e00079-17. doi: 10.1128/MCB.00079-17.
113. You X, Tian J, Zhang H et al. Loss of mitochondrial aconitase promotes colorectal cancer progression via SCD1-mediated lipid remodeling. Mol Metab 2021; 48: 101203. doi: 10.1016/j.molmet.2021.101203.
114. Humphries F, Shmuel-Galia L, Ketelut-Carneiro N et al. Succination inactivates gasdermin D and blocks pyroptosis. Science 2020; 369 (6511): 1633–1637. doi: 10.1126/science.abb9818.
115. Wang M, Chen X, Zhang Y. Biological functions of gasdermins in cancer: from molecular mechanisms to therapeutic potential. Front Cell Dev Biol 2021; 9: 638710. doi: 10.3389/fcell.2021.638710.
116. Golub D, Iyengar N, Dogra S et al. Mutant isocitrate dehydrogenase inhibitors as targeted cancer therapeutics. Front Oncol 2019; 9: 417. doi: 10.3389/fonc.2019.00 417.
117. Naik R, Ban HS, Jang K et al. Methyl 3- (3- (4- (2,4,4-trimethylpentan-2-yl) phenoxy) -propanamido) benzoate as a novel and sual malate sehydrogenase (MDH) 1/2 inhibitor targeting cancer metabolism. J Med Chem 2017; 60 (20): 8631–8646. doi: 10.1021/acs.jmedchem.7b01231.
118. Romero RA, Lunev S, Popowicz GM et al. A fragment-based approach identifies an allosteric pocket that impacts malate dehydrogenase activity. Commun Biol 2021; 4 (1): 949. doi: 10.1038/s42003-021-02442-1.
119. Trigos AS, Pearson RB, Papenfuss AT et al. How the evolution of multicellularity set the stage for cancer. Br J Cancer 2018; 118 (2): 145–152. doi: 10.1038/bjc.2017.398.
120. Yona AH, Manor YS, Herbst RH et al. Chromosomal duplication is a transient evolutionary solution to stress. Proc Natl Acad Sci U S A 2012; 109 (51): 21010–21015. doi: 10.1073/pnas.1211150109.
121. Fais S, Overholtzer M. Cell-in-cell phenomena in cancer. Nat Rev Cancer 2018; 18 (12): 758–766. doi: 10.1038/s41568-018-0073-9.
122. Lozupone F, Fais S. Cancer cell cannibalism: a primeval option to survive. Curr Mol Med 2015; 15 (9): 836–841. doi: 10.2174/1566524015666151026100916.
123. Sun Q, Luo T, Ren Y et al. Competition between human cells by entosis. Cell Res 2014; 24 (11): 1299–1310. doi: 10.1038/cr.2014.138.
124. Lugini L, Matarrese P, Tinari A et al. Cannibalism of live lymphocytes by human metastatic but not primary melanoma cells. Cancer Res 2006; 66 (7): 3629–3638. doi: 10.1158/0008-5472.CAN-05-3204.
125. Sharma V, Singh SK. Retrospective analysis of arthrodesis from various options after anterior cervical discectomy. J Neurosci Rural Pract 2018; 9 (1): 14–18. doi: 10.4103/jnrp.jnrp_366_17.
Labels
Paediatric clinical oncology Surgery Clinical oncologyArticle was published in
Clinical Oncology
2022 Issue 3
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
- Metamizole in perioperative treatment in children under 14 years – results of a questionnaire survey from practice
- Possibilities of Using Metamizole in the Treatment of Acute Primary Headaches
Most read in this issue
- Meigs’ syndrome
- Analysis of the results of radiotherapy and chemoradiotherapy on the background of immunotherapy of patients with cancer of the oral cavity and oropharynx
- Changes of serum protein N-glycosylation in cancer
- Metabolic plasticity of cancer cells