Neurobiology of cancer – the role of cancer tissue innervation
Authors:
B. Mravec 1,2; F. Blaško 1,2
Authors place of work:
Fyziologický ústav, Lekárska fakulta Univerzity Komenského v Bratislave, Slovenská republika
1; Biomedicínske centrum, Ústav experimentálnej endokrinológie, SAV, Bratislava, Slovenská republika
2
Published in the journal:
Klin Onkol 2022; 35(3): 208-214
Category:
Review
doi:
https://doi.org/10.48095/ccko2022208
Summary
Background: Experimental and clinical studies have shown that the nervous system also plays an important role in the processes of carcinogenesis, cancer cell proliferation, and metastasis. These studies, focused on the neurobiological aspects of cancer, elucidate the mechanisms and pathways by which the nervous system affects tumor macro- and microenvironment. The modulatory effect of the nervous system on the tumor microenvironment is significantly mediated by nerves that innervate cancer tissue. The innervation of cancer tissue is already an accepted fact, and several authors consider it to be another hallmark of cancer. Purpose: The aim of this review article is to present a recent data about the role of innervation of cancer tissue, as well as to describe therapeutic consequences. Conclusion: Based on recent data, it can be concluded that the innervation of cancer tissue represents an important factor in the etiopathogenesis of cancer as well as a potential target for new therapeutic interventions in cancer patients.
Keywords:
cancer innervation – neurobiology of cancer – sympathetic nerves – parasympathetic nerves – sensory nerves
Zdroje
1. Faulkner S, Jobling P, March B et al. Tumor neurobiology and the war of nerves in cancer. Cancer Discov 2019; 9 (6): 702–710. doi: 10.1158/2159-8290.CD-18-1398.
2. Mravec B, Tibenský M, Horváthová L. Psychoneuroimunológia nádorových chorôb: súčasné východiská a perspektívy. Klin Onkol 2018; 31 (5): 345–352. doi: 10.14735/amko2018345.
3. Skrivanova K, Gregor J, Bendova M et al. Psychoneuroimmunology in context of comprehensive breast cancer treatment. Klin Onkol 2014; 27 (2): 103–107. doi: 10.14735/amko2014103.
4. Magnon C, Hall SJ, Lin J et al. Autonomic nerve development contributes to prostate cancer progression. Science 2013; 341 (6142): 1236361. doi: 10.1126/science.1236361.
5. Keskinov AA, Tapias V, Watkins SC et al. Impact of the sensory neurons on melanoma growth in vivo. PLoS One 2016; 11 (5): e0156095. doi: 10.1371/journal.pone.0156095.
6. Kamiya A, Hayama Y, Kato S et al. Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression. Nat Neurosci 2019; 22 (8): 1289–1305. doi: 10.1038/s41593-019-0430-3.
7. Zhang L, Wu LL, Huan HB et al. Sympathetic and parasympathetic innervation in hepatocellular carcinoma. Neoplasma 2017; 64 (6): 840–846. doi: 10.4149/neo_2017_605.
8. Bastos DB, Sarafim-Silva BA, Sundefeld M et al. Circulating catecholamines are associated with biobehavioral factors and anxiety symptoms in head and neck cancer patients. PLoS One 2018; 13 (8): e0202515. doi: 10.1371/journal.pone.0202515.
9. Zhao CM, Hayakawa Y, Kodama Y et al. Denervation suppresses gastric tumorigenesis. Sci Transl Med 2014; 6 (250): 250ra115. doi: 10.1126/scitranslmed.3009569.
10. Zhou H, Shi B, Jia Y et al. Expression and significance of autonomic nerves and alpha9 nicotinic acetylcholine receptor in colorectal cancer. Mol Med Rep 2018; 17 (6): 8423–8431. doi: 10.3892/mmr.2018.8883.
11. Saloman JL, Albers KM, Li D et al. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc Natl Acad Sci U S A 2016; 113 (11): 3078–3083. doi: 10.1073/pnas.1512603113.
12. Mravec B. Neurobiology of cancer: introduction of new drugs in the treatment and prevention of cancer. Int J Mol Sci 2021; 22 (11): 6115. doi: 10.3390/ijms22116115.
13. Mauffrey P, Tchitchek N, Barroca V et al. Progenitors from the central nervous system drive neurogenesis in cancer. Nature 2019; 569 (7758): 672–678. doi: 10.1038/s41586-019-1219-y.
14. Amit M, Takahashi H, Dragomir MP et al. Loss of p53 drives neuron reprogramming in head and neck cancer. Nature 2020; 578 (7795): 449–454. doi: 10.1038/s41586-020-1996-3.
15. Allen JK, Armaiz-Pena GN, Nagaraja AS et al. Sustained adrenergic signaling promotes intratumoral innervation through BDNF induction. Cancer Res 2018; 78 (12): 3233–3242. doi: 10.1158/0008-5472.CAN-16-1701.
16. Vachkov IH, Huang X, Yamada Y et al. Inhibition of axonal outgrowth in the tumor environment: involvement of class 3 semaphorins. Cancer Sci 2007; 98 (8): 1192–1197. doi: 10.1111/j.1349-7006.2007.00508.x.
17. Madeo M, Colbert PL, Vermeer DW et al. Cancer exosomes induce tumor innervation. Nat Commun 2018; 9 (1): 4284. doi: 10.1038/s41467-018-06640-0.
18. Cole SW, Nagaraja AS, Lutgendorf SK et al. Sympathetic nervous system regulation of the tumour microenvironment. Nat Rev Cancer 2015; 15 (9): 563–572. doi: 10.1038/nrc3978.
19. Tibensky M, Mravec B. Role of the parasympathetic nervous system in cancer initiation and progression. Clin Transl Oncol 2021; 23 (4): 669–681. doi: 10.1007/s12094-020-02465-w.
20. Zahalka AH, Frenette PS. Nerves in cancer. Nat Rev Cancer 2020; 20 (3): 143–157. doi: 10.1038/s41568-019-0237-2.
21. Jung E, Alfonso J, Monyer H et al. Neuronal signatures in cancer. Int J Cancer 2020; 147 (12): 3281–3291. doi: 10.1002/ijc.33138.
22. Griffin N, Rowe CW, Gao F et al. Clinicopathological significance of nerves in esophageal cancer. Am J Pathol 2020; 190 (9): 1921–1930. doi: 10.1016/j.ajpath.2020.05.012.
23. Hondermarck H. Neurotrophins and their receptors in breast cancer. Cytokine Growth Factor Rev 2012; 23 (6): 357–365. doi: 10.1016/j.cytogfr.2012.06.004.
24. Pundavela J, Roselli S, Faulkner S et al. Nerve fibers infiltrate the tumor microenvironment and are associated with nerve growth factor production and lymph node invasion in breast cancer. Mol Oncol 2015; 9 (8): 1626–1635. doi: 10.1016/j.molonc.2015.05.001.
25. Ayala GE, Dai H, Powell M et al. Cancer-related axonogenesis and neurogenesis in prostate cancer. Clin Cancer Res 2008; 14 (23): 7593–7603. doi: 10.1158/1078-0432.CCR-08-1164.
26. Lucido CT, Wynja E, Madeo M et al. Innervation of cervical carcinoma is mediated by cancer-derived exosomes. Gynecol Oncol 2019; 154 (1): 228–235. doi: 10.1016/j.ygyno.2019.04.651.
27. Dobrenis K, Gauthier LR, Barroca V et al. Granulocyte colony-stimulating factor off-target effect on nerve outgrowth promotes prostate cancer development. Int J Cancer 2015; 136 (4): 982–988. doi: 10.1002/ijc.29046.
28. Bressy C, Lac S, Nigri J et al. LIF drives neural remodeling in pancreatic cancer and offers a new candidate biomarker. Cancer Res 2018; 78 (4): 909–921. doi: 10.1158/0008-5472.CAN-15-2790.
29. Sloan EK, Priceman SJ, Cox BF et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res 2010; 70 (18): 7042–7052. doi: 10.1158/0008-5472.CAN-10-0522.
30. Magni P, Motta M. Expression of neuropeptide Y receptors in human prostate cancer cells. Ann Oncol 2001; 12 (Suppl 2): S27–S29. doi: 10.1093/annonc/12.suppl_2.s27.
31. Rasiah KK, Kench JG, Gardiner-Garden M et al. Aberrant neuropeptide Y and macrophage inhibitory cytokine-1 expression are early events in prostate cancer development and are associated with poor prognosis. Cancer Epidemiol Biomarkers Prev 2006; 15 (4): 711–716. doi: 10.1158/1055-9965.EPI-05-0752.
32. Szpunar MJ, Belcher EK, Dawes RP et al. Sympathetic innervation, norepinephrine content, and norepinephrine turnover in orthotopic and spontaneous models of breast cancer. Brain Behav Immun 2016; 53: 223–233. doi: 10.1016/j.bbi.2015.12.014.
33. Bae GE, Kim HS, Won KY et al. Lower sympathetic nervous system density and beta-adrenoreceptor expression are involved in gastric cancer progression. Anticancer Res 2019; 39 (1): 231–236. doi: 10.21873/anticanres.13102.
34. Prazeres P, Leonel C, Silva WN et al. Ablation of sensory nerves favours melanoma progression. J Cell Mol Med 2020; 24 (17): 9574–9589. doi: 10.1111/jcmm.15 381.
35. Deborde S, Omelchenko T, Lyubchik A et al. Schwann cells induce cancer cell dispersion and invasion. J Clin Invest 2016; 126 (4): 1538–1554. doi: 10.1172/JCI82658.
36. Johnston M, Yu E, Kim J. Perineural invasion and spread in head and neck cancer. Expert Rev Anticancer Ther 2012; 12 (3): 359–371. doi: 10.1586/era.12.9.
37. Venkatesh H, Monje M. Neuronal activity in ontogeny and oncology. Trends Cancer 2017; 3 (2): 89–112. doi: 10.1016/j.trecan.2016.12.008.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2022 Číslo 3
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
- Possibilities of Using Metamizole in the Treatment of Acute Primary Headaches
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
Najčítanejšie v tomto čísle
- Meigs’ syndrome
- Analysis of the results of radiotherapy and chemoradiotherapy on the background of immunotherapy of patients with cancer of the oral cavity and oropharynx
- Changes of serum protein N-glycosylation in cancer
- Metabolic plasticity of cancer cells