Biomarkers as prognostic and predictive factors in patients with hepatocellular carcinoma undergoing radiological oncological interventions
Authors:
J. Zavadil 1,2; T. Rohan 1; J. Juráček 3; I. Kiss 4; L. Ostřížková 5; V. Válek 1; O. Slabý 3; T. Andrašina 1
Authors place of work:
Klinika radiologie a nukleární medicíny LF MU a FN Brno
1; Radiodia gnostický ústav, FN Ostrava
2; CEITEC – Středoevropský technologický institut, MU Brno
3; Klinika komplexní onkologické péče LF MU a MOÚ Brno
4; Interní hematoonkologická klinika LF MU a FN Brno
5
Published in the journal:
Klin Onkol 2023; 36(2): 104-111
Category:
Reviews
doi:
https://doi.org/10.48095/ccko2023104
Summary
Background: Hepatocellular carcinoma is the most common malignant liver tumor in adults and thermal ablation and transarterial embolization are important methods of therapy. Thermal ablation can be used in early stages. Methods based on the transarterial approach, especially transarterial chemoembolization, play an important role in intermediate stage diseases. The success of procedures depends not only on the biological nature and the size of the tumor, on the technical design of the procedure and on the patient‘s response to treatment, but also on the molecular changes associated with these procedures. In addition to classic predictive and prognostic factors including age, patient comorbidities, Child-Pugh score, tumor characteristics, presence of large surrounding vessels, and portal vein thrombosis, molecular prognostic and predictive factors (serum biomarkers) are often mentioned in studies. Currently, only a-fetoprotein is routinely used as a prognostic biomarker; however, there are studies referring to new serum biomarkers that can potentially help to classical markers and imaging methods to determine the cancer prognosis and predict the success of therapy. These biomarkers most often include g-glutamyltranspeptidase, des- g-carboxyprothrombin, some types of microRNAs, inflammatory and hypoxic substances, whose serum levels are changed by the intervention therapies. Evaluation of these molecules could lead to the optimization of the medical intervention (choice of therapy method, timing of treatment) or change the management of patient follow-up after interventions. Although several biomarkers have shown promising results, most serum biomarkers still require validation in phase III studies. Purpose: The aim of this work is to present a comprehensive overview of classical and molecular biomarkers that could potentially help in the prognostic stratification of patients and better predict the success and effect of radiological intervention methods.
Keywords:
transarterial chemoembolization – Prognosis – hepatocellular carcinoma – thermal ablation – bio markers – predictive factor
Zdroje
1. Llovet JM, Brú C, Bruix J. Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis 1999; 19 (3): 329–338. doi: 10.1055/s-2007-1007122.
2. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of hepatocellular carcinoma. J Hepatol 2018; 69 (1): 182–236. doi: 10.1016/j.jhep.2018.03.019.
3. Zhu F, Rhim H. Thermal ablation for hepatocellular carcinoma: what’s new in 2019. Chin Clin Oncol 2019; 8 (6): 58. doi: 10.21037/cco.2019.11.03.
4. Reig M, Forner A, Rimola J et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J Hepatol 2022; 76 (3): 681–693. doi: 10.1016/j.jhep.2021.11.018.
5. Brace C. Thermal tumor ablation in clinical use. IEEE Pulse 2011; 2 (5): 28–38. doi: 10.1109/MPUL.2011.942603.
6. Varela M, Real MI, Burrel M et al. Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. J Hepatol 2007; 46 (3): 474–481. doi: 10.1016/j.jhep.2006.10.020.
7. Rohan T, Hustý J, Andrasina T et al. DSM (degradable starch microspheres) – embolization material expanding the possibilities of transarterial chemoembolisation of the liver. Ces Radiol 2020; 74 (2): 108–113.
8. Lu Z, Sun Z, Liu C et al. Prognostic nomogram for hepatocellular carcinoma with radiofrequency ablation: a retrospective cohort study. BMC Cancer 2021; 21 (1): 751. doi: 10.1186/s12885-021-08505-0.
9. Komorizono Y, Oketani M, Sako K et al. Risk factors for local recurrence of small hepatocellular carcinoma tumors after a single session, single application of percutaneous radiofrequency ablation. Cancer 2003; 97 (5): 1253–1262. doi: 10.1002/cncr.11168.
10. Cho YK, Rhim H, Noh S. Radiofrequency ablation versus surgical resection as primary treatment of hepatocellular carcinoma meeting the Milan criteria: a systematic review. J Gastroenterol Hepatol 2011; 26 (9): 1354–1360. doi: 10.1111/j.1440-1746.2011.06812.x.
11. Kim JS, Kim W, So YH et al. Topographical impact of hepatitis B-related hepatocellular carcinoma on local recurrence after radiofrequency ablation. J Clin Gastroenterol 2014; 48 (1): 66–72. doi: 10.1097/MCG.0b013e318294521f.
12. Izzo F, Granata V, Grassi R et al. Radiofrequency ablation and microwave ablation in liver tumors: an update. Oncologist 2019; 24 (10): e990–e1005. doi: 10.1634/theoncologist.2018-0337.
13. Rohan T, Uher M, Matkulčík P et al. Prognostic survival factors of hepatocellular carcinoma treated with transarterial chemoembolization. Klin Onkol 2020; 33 (3): 214–219. doi: 10.14735/amko2020214.
14. Kadalayil L, Benini R, Pallan L et al. A simple prognostic scoring system for patients receiving transarterial embolisation for hepatocellular cancer. Ann Oncol 2013; 24 (10): 2565–2570. doi: 10.1093/annonc/mdt247.
15. Staňková M, Andrašina T, Sedmík J et al. Přežívání pacientů s hepatocelulárním karcinomem léčených transarteriální chemoembolizací s drug-eluting beads. Ces Radiol 2015; 69 (2): 106–115.
16. Colecchia A, Schiumerini R, Cucchetti A et al. Prognostic factors for hepatocellular carcinoma recurrence. World J Gastroenterol 2014; 20 (20): 5935–5950. doi: 10.3748/wjg.v20.i20.5935.
17. Abu El Makarem M. An overview of biomarkers for the diagnosis of hepatocellular carcinoma. Hepat Mon 2012; 12 (10 HCC): e6122. doi: 10.5812/hepatmon.6122.
18. Wang N-Y, Wang C, Li W et al. Prognostic value of serum AFP, AFP-L3, and GP73 in monitoring short-term treatment response and recurrence of hepatocellular carcinoma after radiofrequency ablation. Asian Pac J Cancer Prev 2014; 15 (4): 1539–1544. doi: 10.7314/apjcp. 2014.15.4.1539.
19. Tateishi R, Shiina S, Yoshida H et al. Prediction of recurrence of hepatocellular carcinoma after curative ablation using three tumor markers. Hepatology 2006; 44 (6): 1518–1527. doi: 10.1002/hep.21408.
20. Toyoda H, Kumada T, Kaneoka Y et al. Prognostic value of pretreatment levels of tumor markers for hepatocellular carcinoma on survival after curative treatment of patients with HCC. J Hepatol 2008; 49 (2): 223–232. doi: 10.1016/j.jhep.2008.04.013.
21. Lee YK, Kim SU, Kim DY et al. Prognostic value of a-fetoprotein and des- g-carboxy prothrombin responses in patients with hepatocellular carcinoma treated with transarterial chemoembolization. BMC Cancer 2013; 13: 5. doi: 10.1186/1471-2407-13-5.
22. Riaz A, Ryu RK, Kulik LM et al. Alpha-fetoprotein response after locoregional therapy for hepatocellular carcinoma: oncologic marker of radiologic response, progression, and survival. J Clin Oncol 2009; 27 (34): 5734–5742. doi: 10.1200/JCO.2009.23.1282.
23. Huang C, Sheng S, Sun X et al. Lens culinaris agglutinin-reactive a-fetoprotein decline after transcatheter arterial chemoembolization in patients with hepatocellular carcinoma predicts survival. Clin Chim Acta 2014; 431: 232–238. doi: 10.1016/j.cca.2014.02.009.
24. Zhang J-B, Chen Y, Zhang B et al. Prognostic significance of serum gamma-glutamyl transferase in patients with intermediate hepatocellular carcinoma treated with transcatheter arterial chemoembolization. Eur J Gastroenterol Hepatol 2011; 23 (9): 787–793. doi: 10.1097/MEG.0b013e32834902dd.
25. Ma H, Zhang L, Tang B et al. g-Glutamyltranspeptidase is a prognostic marker of survival and recurrence in radiofrequency-ablation treatment of hepatocellular carcinoma. Ann Surg Oncol 2014; 21 (9): 3084–3089. doi: 10.1245/s10434-014-3724-4.
26. Guiu B, Deschamps F, Boulin M et al. Serum gamma-glutamyl-transferase independently predicts outcome after transarterial chemoembolization of hepatocellular carcinoma: external validation. Cardiovasc Intervent Radiol 2012; 35 (5): 1102–1108. doi: 10.1007/s00270-011-0293-9.
27. Guo J, Liu S, Gao S et al. g-Glutamyltranspeptidase as a prognostic biomarker in advanced hepatocellular carcinoma treated with transarterial chemoembolization. J Vasc Interv Radiol 2021; 32 (3): 419–428.e2. doi: 10.1016/ j.jvir.2020.07.020.
28. Zhang Y-S, Chu J-H, Cui S-X et al. Des- g-carboxy prothrombin (DCP) as a potential autologous growth factor for the development of hepatocellular carcinoma. Cell Physiol Biochem 2014; 34 (3): 903–915. doi: 10.1159/000366308.
29. Liebman HA, Furie BC, Tong MJ et al. Des-gamma-carboxy (abnormal) prothrombin as a serum marker of primary hepatocellular carcinoma. N Engl J Med 1984; 310 (22): 1427–1431. doi: 10.1056/NEJM198405313102204.
30. Koike Y, Shiratori Y, Sato S et al. Des-gamma-carboxy prothrombin as a useful predisposing factor for the development of portal venous invasion in patients with hepatocellular carcinoma: a prospective analysis of 227 patients. Cancer 2001; 91 (3): 561–569. doi: 10.1002/1097-0142 (20010201) 91: 3<561:: aid-cncr1035>3.0.co; 2-n.
31. Lee S, Rhim H, Kim Y et al. Post-ablation des-gamma-carboxy prothrombin level predicts prognosis in hepatitis B-related hepatocellular carcinoma. Liver Int 2016; 36 (4): 580–587. doi: 10.1111/liv.12991.
32. Takahashi S, Kudo M, Chung H et al. PIVKA-II is the best prognostic predictor in patients with hepatocellular carcinoma after radiofrequency ablation therapy. Oncology 2008; 75 (Suppl 1): 91–98. doi: 10.1159/000173429.
33. Li B, Li B, Guo T et al. Artificial neural network models for early diagnosis of hepatocellular carcinoma using serum levels of a-fetoprotein, a-fetoprotein-L3, des- g-carboxy prothrombin, and Golgi protein 73. Oncotarget 2017; 8 (46): 80521–80530. doi: 10.18632/oncotarget.19298.
34. Kimura H, Ohkawa K, Miyazaki M et al. Subclassification of patients with intermediate-stage (Barcelona Clinic Liver Cancer stage-B) hepatocellular carcinoma using the up-to-seven criteria and serum tumor markers. Hepatol Int 2017; 11 (1): 105–114. doi: 10.1007/s12072-016-9771-0.
35. Saeki I, Yamasaki T, Tanabe N et al. A new therapeutic assessment score for advanced hepatocellular carcinoma patients receiving hepatic arterial infusion chemotherapy. PLoS One 2015; 10 (5): e0126649. doi: 10.1371/journal.pone.0126649.
36. Park W-H, Shim J-H, Han S-B et al. Clinical utility of des- g-carboxyprothrombin kinetics as a complement to radiologic response in patients with hepatocellular carcinoma undergoing transarterial chemoembolization. J Vasc Interv Radiol 2012; 23 (7): 927–936. doi: 10.1016/j.jvir.2012.04.021.
37. Lucatelli P, Burrel M, Guiu B et al. CIRSE standards of practice on hepatic transarterial chemoembolisation. Cardiovasc Intervent Radiol 2021; 44 (12): 1851–1867. doi: 10.1007/s00270-021-02968-1.
38. Safcak D, Drazilova S, Gazda J et al. Nonalcoholic fatty liver disease-related hepatocellular carcinoma: clinical patterns, outcomes, and prognostic factors for overall survival – a retrospective analysis of a Slovak cohort. J Clin Med 2021; 10 (14): 3186. doi: 10.3390/jcm10143186.
39. Ahmed M, Kumar G, Gourevitch S et al. Radiofrequency ablation (RFA) -induced systemic tumor growth can be reduced by suppression of resultant heat shock proteins. Int J Hyperthermia 2018; 34 (7): 934–942. doi: 10.1080/02656736.2018.1462535.
40. Fujiwara N, Tateishi R, Nakagawa H et al. Slight elevation of high-sensitivity C-reactive protein to predict recurrence and survival in patients with early stage hepatitis C-related hepatocellular carcinoma. Hepatol Res 2015; 45 (6): 645–655. doi: 10.1111/hepr.12398.
41. Cho HJ, Kim SS, Ahn SJ et al. Low serum interleukin-6 levels as a predictive marker of recurrence in patients with hepatitis B virus related hepatocellular carcinoma who underwent curative treatment. Cytokine 2015; 73 (2): 245–252. doi: 10.1016/j.cyto.2015.02.027.
42. Chu MO, Shen C-H, Chang T-S et al. Pretreatment inflammation-based markers predict survival outcomes in patients with early stage hepatocellular carcinoma after radiofrequency ablation. Sci Rep 2018; 8 (1): 16611. doi: 10.1038/s41598-018-34543-z.
43. Chen T-M, Lin C-C, Huang P-T et al. Neutrophil-to-lymphocyte ratio associated with mortality in early hepatocellular carcinoma patients after radiofrequency ablation. J Gastroenterol Hepatol 2012; 27 (3): 553–561. doi: 10.1111/j.1440-1746.2011.06910.x.
44. Pinato DJ, Sharma R. An inflammation-based prognostic index predicts survival advantage after transarterial chemoembolization in hepatocellular carcinoma. Transl Res 2012; 160 (2): 146–152. doi: 10.1016/j.trsl.2012.01.011.
45. Jun CH, Ki HS, Lee KH et al. Impact of serum C-reactive protein level on the prognosis of patients with hepatocellular carcinoma undergoing TACE. Clin Mol Hepatol 2013; 19 (1): 70–77. doi: 10.3350/cmh.2013.19.1.70.
46. Loosen SH, Schulze-Hagen M, Leyh C et al. IL-6 and IL-8 serum levels predict tumor response and overall survival after TACE for primary and secondary hepatic malignancies. Int J Mol Sci 2018; 19 (6): 1766. doi: 10.3390/ijms19061766.
47. Xiong XX, Qiu XY, Hu DX et al. Advances in hypoxia-mediated mechanisms in hepatocellular carcinoma. Mol Pharmacol 2017; 92 (3): 246–255. doi: 10.1124/mol.116.107706.
48. Tampaki M, Doumba PP, Deutsch M et al. Circulating biomarkers of hepatocellular carcinoma response after locoregional treatments: new insights. World J Hepatol 2015; 7 (14): 1834–1842. doi: 10.4254/wjh.v7.i14.1834.
49. Xu X, Tao Y, Shan L et al. The role of MicroRNAs in hepatocellular carcinoma. J Cancer 2018; 9 (19): 3557–3569. doi: 10.7150/jca.26350.
50. Kutay H, Bai S, Datta J et al. Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 2006; 99 (3): 671–678. doi: 10.1002/jcb.20982.
51. Coulouarn C, Factor VM, Andersen JB et al. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 2009; 28 (40): 3526–3536. doi: 10.1038/onc.2009.211.
52. Nakao K, Miyaaki H, Ichikawa T. Antitumor function of microRNA-122 against hepatocellular carcinoma. J Gastroenterol 2014; 49 (4): 589–593. doi: 10.1007/s00535-014-0932-4.
53. Dang Y, Luo D, Rong M et al. Underexpression of miR-34a in hepatocellular carcinoma and its contribution towards enhancement of proliferating inhibitory effects of agents targeting c-MET. PLoS One 2013; 8 (4): e61054. doi: 10.1371/journal.pone.0061054.
54. Slabý O, Svoboda M. MikroRNA v onkologii. Praha: Galén 2012.
55. Cho HJ, Kim JK, Nam JS et al. High circulating microRNA-122 expression is a poor prognostic marker in patients with hepatitis B virus-related hepatocellular carcinoma who undergo radiofrequency ablation. Clin Biochem 2015; 48 (16–17): 1073–1078. doi: 10.1016/ j.clinbiochem.2015.06.019.
56. Cui X, Wu Y, Wang Z et al. MicroRNA-34a expression is predictive of recurrence after radiofrequency ablation in early hepatocellular carcinoma. Tumour Biol 2015; 36 (5): 3887–3893. doi: 10.1007/s13277-014-3031-5.
57. Cho HJ, Kim SS, Nam JS et al. Low levels of circulating microRNA-26a/29a as poor prognostic markers in patients with hepatocellular carcinoma who underwent curative treatment. Clin Res Hepatol Gastroenterol 2017; 41 (2): 181–189. doi: 10.1016/j.clinre.2016.09.011.
58. Andrasina T, Juracek J, Zavadil J et al. Thermal ablation and transarterial chemoembolization are characterized by changing dynamics of circulating microRNAs. J Vasc Interv Radiol 2021; 32 (3): 403–411. doi: 10.1016/ j.jvir.2020.10.024.
59. Liu M, Liu J, Wang L et al. Association of serum microRNA expression in hepatocellular carcinomas treated with transarterial chemoembolization and patient survival. PLoS One 2014; 9 (10): e109347. doi: 10.1371/journal.pone.0109347.
60. Zhan M, Li Y, Hu B et al. Serum microRNA-210 as a predictive biomarker for treatment response and prognosis in patients with hepatocellular carcinoma undergoing transarterial chemoembolization. J Vasc Interv Radiol 2014; 25 (8): 1279–1287.e1. doi: 10.1016/j.jvir.2014.04.013.
61. Zavadil J, Juráček J, Čechová B et al. Dynamic changes in circulating microRNA levels in liver cancer patients undergoing thermal ablation and transarterial chemoembolization. Klin Onkol 2019; 32 (Suppl 1): 164–166.
62. Pelizzaro F, Cardin R, Sartori A et al. Circulating microRNA-21 and microRNA-122 as prognostic biomarkers in hepatocellular carcinoma patients treated with transarterial chemoembolization. Biomedicines 2021; 9 (8): 890. doi: 10.3390/biomedicines9080890.
63. Nalejska E, Mączyńska E, Lewandowska MA. Prognostic and predictive biomarkers: tools in personalized oncology. Mol Diagn Ther 2014; 18 (3): 273–284. doi: 10.1007/s40291-013-0077-9.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2023 Číslo 2
- Spasmolytic Effect of Metamizole
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole in perioperative treatment in children under 14 years – results of a questionnaire survey from practice
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
- Obstacle Called Vasospasm: Which Solution Is Most Effective in Microsurgery and How to Pharmacologically Assist It?
Najčítanejšie v tomto čísle
- Ixazomib – lenalidomide – dexamethason in heavily pretreated multiple myeloma patients – case reports
- Liver adenomatosis mimics metastatic liver involvement on FDG-PET/ CT
- Selected trends in head and neck cancer epidemiology in Slovakia – an international comparison
- Image guided adaptive brachytherapy of cervical cancer – practical recommendations