Image guided adaptive brachytherapy of cervical cancer – practical recommendations
Authors:
R. Vojtíšek
Authors place of work:
Onkologická a radioterapeutická klinika LF UK a FN Plzeň
Published in the journal:
Klin Onkol 2023; 36(2): 96-103
Category:
Reviews
doi:
https://doi.org/10.48095/ccko202396
Summary
Brachytherapy (BT) is an integral part of radical radiotherapy (RT) or radiochemotherapy (RCT) in patients who are not suitable candidates for surgery. These are usually patients with locally advanced cervical cancer. The goal of all BT planning eff orts has been, still is, and certainly will continue to be, to defi ne the anatomical boundaries of the tumor and the relationship of the tumor to organs at risk (OARs) as best as possible, using available modern imaging techniques. Image guided adaptive brachytherapy (IGABT) is currently the most advanced method of uterovaginal BT. Adaptive planning allows dose escalation from BT to newly defi ned target volumes, according to the risk of recurrence, which is mainly determined by the level of tumor burden. This dose adaptation based on the response to external RCT is a major change in practice compared to conventional BT planning based on dose prescription to point A. The main advantage of the IGABT concept is that it allows the assessment of individual dose distributions in target volumes and OARs, which in turn leads to improved dose coverage of target volumes while decreasing the volume irradiated by the prescribed dose compared to conventional 2D planning. Purpose: In this review article, I provide a comprehensive up-to-date perspective on this issue, particularly in terms of practical recommendations regarding the defi nition of target volumes, the use of diff erent types of uterovaginal applicators, intraoperative complications, and potential manifestations of late gastrointestinal, genitourinary, and vaginal toxicity.
Keywords:
uterine cervical cancer – radiotherapy – brachytherapy – adaptive brachytherapy – uterovaginal brachytherapy – radiotherapy – brachytherapy – uterine cervical cancer – adaptive brachytherapy – uterovaginal brachytherapy
Zdroje
1. International Agency for Research on Cancer. Cancer tomorrow. [online]. Available from: https: //gco.iarc.fr/tomorrow.
2. Jemal A, Bray F, Center MM et al. Global cancer statistics. CA Cancer J Clin 2011; 61 (2): 69–90. doi: 10.3322/caac.20107.
3. Dušek L, Mužík J, Kubásek M et al. Epidemiologie zhoubných nádorů v České republice [online]. Dostupné z: http: //www.svod.cz.
4. Klopp AH. Introduction: cervical cancer. Semin Radiat Oncol 2020; 30 (4): 263–264. doi: 10.1016/j.semradonc.2020.05.010.
5. Pechačová Z, Lohynská R, Weitoschová Z et al. Chemoradiotherapy in the treatment of cervical cancer – a single institution retrospective review. Klin Onkol 2022; 35 (2): 139–149. doi: 10.48095/ccko2022139.
6. Shin KH, Kim TH, Cho JK et al. CT-guided intracavitary radiotherapy for cervical cancer: comparison of conventional point A plan with clinical target volume-based three-dimensional plan using dose-volume parameters. Int J Radiat Oncol Biol Phys 2006; 64 (1): 197–204. doi: 10.1016/j.ijrobp.2005.06.015.
7. International Commission on Units and Measurements. ICRU report 38: dose and volume specification for reporting intracavitary therapy in gynecology. [online]. Available from: https: //www.icru.org/report/dose-and-volume-specification-for-reporting-intracavitary-therapy-in-gynecology-report-38/.
8. Tod M, Meredith WJ. Treatment of cancer of the cervix uteri, a revised Manchester method. Br J Radiol 1953; 26 (305): 252–257. doi: 10.1259/0007-1285-26-305-252.
9. Onal C, Arslan G, Topkan E et al. Comparison of conventional and CT-based planning for intracavitary brachytherapy for cervical cancer: target volume coverage and organs at risk doses. J Exp Clin Cancer Res 2009; 28 (1): 95. doi: 10.1186/1756-9966-28-95.
10. Vojtíšek R, Mouryc F, Čechová D et al. MRI based 3D brachytherapy planning of the cervical cancer – our experiences with the use of the uterovaginal Vienna Ring MR CT applicator. Klin Onkol 2014; 27 (1): 45–51. doi: 10.14735/amko201445.
11. Doležel M, Vaňásek J, Odrážka K et al. The progress in the treatment of cervical cancer-3D brachytherapy CT/MR-based planning. Ceska Gynekol 2008; 73 (3): 144–149.
12. NCCN Guidelines for Patients. Cervical cancer. [online]. Available from: https: //www.nccn.org/patients/guidelines/content/PDF/cervical-patient-guideline.pdf.
13. Viswanathan AN, Moughan J, Small W Jr et al. The quality of cervical cancer brachytherapy implantation and the impact on local recurrence and disease-free survival in radiation therapy oncology group prospective trials 0116 and 0128. Int J Gynecol Cancer 2012; 22 (1): 123–131. doi: 10.1097/IGC.0b013e31823ae3c9.
14. Kapur T, Egger J, Damato A et al. 3-T MR-guided brachytherapy for gynecologic malignancies. Magn Reson Imaging 2012; 30 (9): 1279–1290. doi: 10.1016/ j.mri.2012.06.003.
15. Geets X, Tomsej M, Lee JA et al. Adaptive biological image-guided IMRT with anatomic and functional imaging in pharyngo-laryngeal tumors: impact on target volume delineation and dose distribution using helical tomotherapy. Radiother Oncol 2007; 85 (1): 105–115. doi: 10.1016/ j.radonc.2007.05.010.
16. Schmid MP, Mansmann B, Federico M et al. Residual tumour volumes and grey zones after external beam radiotherapy (with or without chemotherapy) in cervical cancer patients. A low-field MRI study. Strahlenther Onkol 2013; 189 (3): 238–244. doi: 10.1007/s00066-012- 0260-7.
17. Tan LT, Tanderup K, Kirisits C et al. Image-guided adaptive radiotherapy in cervical cancer. Semin Radiat Oncol 2019; 29 (3): 284–298. doi: 10.1016/j.semradonc.2019.02.010.
18. Serban M, Kirisits C, Pötter R et al. Isodose surface volumes in cervix cancer brachytherapy: change of practice from standard (Point A) to individualized image guided adaptive (EMBRACE I) brachytherapy. Radiother Oncol 2018; 129 (3): 567–574. doi: 10.1016/j.radonc.2018.09.002.
19. Pötter R, Dimopoulos J, Bachtiary B et al. 3D conformal HDR-brachy- and external beam therapy plus simultaneous cisplatin for high-risk cervical cancer: clinical experience with 3 year follow-up. Radiother Oncol 2006; 79 (1): 80–86. doi: 10.1016/j.radonc.2006.01.007.
20. Pötter R, Dimopoulos J, Georg P et al. Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother Oncol 2007; 83 (2): 148–155. doi: 10.1016/j.radonc.2007.04.012.
21. Dimopoulos JC, Lang S, Kirisits C et al. Dose-volume histogram parameters and local tumor control in magnetic resonance image-guided cervical cancer brachytherapy. Int J Radiat Oncol Biol Phys 2009; 75 (1): 56–63. doi: 10.1016/j.ijrobp.2008.10.033.
22. Muschitz S, Petrow P, Briot E et al. Correlation between the treated volume, the GTV and the CTV at the time of brachytherapy and the histopathologic findings in 33 patients with operable cervix carcinoma. Radiother Oncol 2004; 73 (2): 187–194. doi: 10.1016/j.radonc.2004.07.028.
23. Pötter R, Federico M, Sturdza A et al. Value of magnetic resonance imaging without or with applicator in place for target definition in cervix cancer brachytherapy. Int J Radiat Oncol Biol Phys 2016; 94 (3): 588–597. doi: 10.1016/ j.ijrobp.2015.09.023.
24. Viswanathan AN, Dimopoulos J, Kirisits C et al. Computed tomography versus magnetic resonance imaging-based contouring in cervical cancer brachytherapy: results of a prospective trial and preliminary guidelines for standardized contours. Int J Radiat Oncol Biol Phys 2007; 68 (2): 491–498. doi: 10.1016/j.ijrobp.2006.12.021.
25. Vojtíšek R, Hošek P, Sukovská E et al. Treatment outcomes of MRI-guided adaptive brachytherapy in patients with locally advanced cervical cancer: institutional experiences. Strahlenther Onkol 2022; 198 (9): 783–791. doi: 10.1007/s00066-021-01887.
26. Haie-Meder C, Pötter R, van Limbergen E et al. Recomendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol 2005; 74 (3): 235–245. doi: 10.1016/ j.radonc.2004.12.015.
27. Pötter R, Haie-Meder C, van Limbergen E et al. Recommendations from Gynaecological (GYN) GEC ESTRO Working Group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol 2006; 78 (1): 67–77. doi: 10.1016/j.radonc.2005.11.014.
28. Hellebust TP, Kirisits C, Berger D et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group: considerations and pitfalls in commissioning and applicator reconstruction in 3D image-based treatment planning of cervix cancer brachytherapy. Radiother Oncol 2010; 96 (2): 153–160. doi: 10.1016/j.radonc.2010.06. 004.
29. Dimopoulos JC, Petrow P, Tanderup K et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy. Radiother Oncol 2012; 103 (1): 113–122. doi: 10.1016/j.radonc.2011.12.024.
30. International Commission on Radiation Units and Measurements. ICRU report 89: prescribing, recording, and reporting brachytherapy for cancer of the cervix. [online]. Available from: https: //www.icru.org/report/icru-report-89-prescribing-recording-and-reporting-brachytherapy-for-cancer-of-the-cervix/.
31. Viswanathan AN, Thomadsen B, American Brachytherapy Society Cervical Cancer Recommendations Committee et al. American brachytherapy society consensus guidelines for locally advanced carcinoma of the cervix. Part I: general principles. Brachytherapy 2012; 11 (1): 33–46. doi: 10.1016/j.brachy.2011.07.003.
32. Hegazy N, Pötter R, Kirisits C et al. High-risk clinical target volume delineation in CT-guided cervical cancer brachytherapy: impact of information from FIGO stage with or without systematic inclusion of 3D documentation of clinicalgynecological examination. Acta Oncol 2013; 52 (7): 1345–1352. doi: 10.3109/0284186X.2013.813068.
33. Tanderup K, Nesvacil N, Kirchheiner K et al. Evidence-based dose planning aims and dose prescription in image-guided brachytherapy combined with radiochemotherapy in locally advanced cervical cancer. Semin Radiat Oncol 2020; 30 (4): 311–327. doi: 10.1016/j.semradonc.2020.05.008.
34. U.S. National Library of Medicine. An international study on magnetic resonance imaging (MRI) -guided brachytherapy in locally advanced cervical cancer (EMBRACE). [online]. Available from: https: //clinicaltrials.gov/ct2/show/NCT00920920.
35. Lang S, Kirisits C, Dimopoulos J et al. Treatment planning for MRI assisted brachytherapy of gynecologic malignancies based on total dose constraints. Int J Radiat Oncol Biol Phys 2007; 69 (2): 619–627. doi: 10.1016/ j.ijrobp.2007.06.019.
36. Viswanathan AN, Beriwal S, de los Santos JF et al. American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part II: high-dose-rate brachytherapy. Brachytherapy 2012; 11 (1): 47–52. doi: 10.1016/j.brachy.2011.07.002.
37. Elledge CR, Lavigne AW, Bhatia RK et al. Aiming for 100% local control in locally advanced cervical cancer: the role of complex brachytherapy applicators and intraprocedural imaging. Semin Radiat Oncol 2020; 30 (4): 300–310. doi: 10.1016/j.semradonc.2020.05.002.
38. Tanderup K, Hellebust TP, Lang S et al. Consequences of random and systematic reconstruction uncertainties in 3D image based brachytherapy in cervical cancer. Radiother Oncol 2008; 89 (2): 156–163. doi: 10.1016/j.radonc.2008.06.010.
39. Kim RY, Levy DS, Brascho DJ et al. Uterine perforation during intracavitary application. Prognostic significance in carcinoma of the cervix. Radiology 1983; 147 (1): 249–251. doi: 10.1148/radiology.147.1.6681912.
40. Corn BW, Shaktman BD, Lanciano RM et al. Intra- and perioperative complications associated with tandem and colpostat application for cervix cancer. Gynecol Oncol 1997; 64 (2): 224–229. doi: 10.1006/gyno.1996.4564.
41. Jhingran A, Eifel PJ. Perioperative and postoperative complications of intracavitary radiation for FIGO stage I-III carcinoma of the cervix. Int J Radiat Oncol Biol Phys 2000; 46 (5): 1177–1183. doi: 10.1016/s0360-3016 (99) 00545-3.
42. Granai CO, Doherty F, Allee P et al. Ultrasound for diagnosing and preventing malplacement of intrauterine tandems. Obstet Gynecol 1990; 75 (1): 110–113.
43. Barnes EA, Thomas G, Ackerman I et al. Prospective comparison of clinical and computed tomography assessment in detecting uterine perforation with intracavitary brachytherapy for carcinoma of the cervix. Int J Gynecol Cancer 2007; 17 (4): 821–826. doi: 10.1111/j.1525-1438.2007.00888.x.
44. Schaner PE, Caudell JJ, de los Santos JF et al. Intraoperative ultrasound guidance during intracavitary brachytherapy applicator placement in cervical cancer: the University of Alabama at Birmingham experience. Int J Gynecol Cancer 2013; 23 (3): 559–566. doi: 10.1097/IGC.0b013e3182859302.
45. Bahadur YA, Eltaher MM, Hassouna AH et al. Uterine perforation and its dosimetric implications in cervical cancer high-dose-rate brachytherapy. J Contemp Brachytherapy 2015; 7 (1): 41–47. doi: 10.5114/jcb.2015.48898.
46. Segedin B, Gugic J, Petric P. Uterine perforation – 5-year experience in 3-D image guided gynaecological brachytherapy at Institute of Oncology Ljubljana. Radiol Oncol 2013; 47 (2): 154–160. doi: 10.2478/raon-2013-0030.
47. Corn BW, Hanlon AL, Pajak TF et al. Technically accurate intracavitary insertions improve pelvic control and survival among patients with locally advanced carcinoma of the uterine cervix. Gynecol Oncol 1994; 53 (3): 294–300. doi: 10.1006/gyno.1994.1137.
48. Makin WP, Hunter RD. CT scanning in intracavitary therapy: unexpected findings in „straightforward“ insertions. Radiother Oncol 1988; 13 (4): 253–255. doi: 10.1016/0167-8140 (88) 90220-4.
49. Davidson MT, Yuen J, d‘Souza DP et al. Optimization of high-dose-rate cervix brachytherapy applicator placement: the benefits of intraoperative ultrasound guidance. Brachytherapy 2008; 7 (3): 248–253. doi: 10.1016/ j.brachy.2008.03.004.
50. Sapienza LG, Jhingran A, Kollmeier MA et al. Decrease in uterine perforations with ultrasound image-guided applicator insertion in intracavitary brachytherapy for cervical cancer: a systematic review and meta-analysis. Gynecol Oncol 2018; 151 (3): 573–578. doi: 10.1016/ j.ygyno.2018.10.011.
51. Marks LB, Carroll PR, Dugan TC et al. The response of the urinary bladder, urethra, and ureter to radiation and chemotherapy. Int J Radiat Oncol Biol Phys 1995; 31 (5): 1257–1280. doi: 10.1016/0360-3016 (94) 00431-J.
52. Vojtíšek R, Sukovská E, Baxa J et al. Late side effects of 3T MRI-guided 3D high-dose rate brachytherapy of cervical cancer: institutional experiences. Strahlenther Onkol 2019; 195 (11): 972–981. doi: 10.1007/s00066-019-01491-0.
53. Theis VS, Sripadam R, Ramani V et al. Chronic radiation enteritis. Clin Oncol (R Coll Radiol) 2010; 22 (1): 70–83. doi: 10.1016/j.clon.2009.10.003.
54. Jensen NBK, Pötter R, Kirchheiner K et al. Bowel morbidity following radiochemotherapy and image-guided adaptive brachytherapy for cervical cancer: physician- and patient reported outcome from the EMBRACE study. Radiother Oncol 2018; 127 (3): 431–439. doi: 10.1016/j.radonc.2018.05.016.
55. Mazeron R, Maroun P, Castelnau-Marchand P et al. Pulsed-dose rate image-guided adaptive brachytherapy in cervical cancer: dose-volume effect relationships for the rectum and bladder. Radiother Oncol 2015; 116 (2): 226–232. doi: 10.1016/j.radonc.2015.06.027.
56. Putta S, Andreyev HJ. Faecal incontinence: a late side-effect of pelvic radiotherapy. Clin Oncol (R Coll Radiol) 2005; 17 (6): 469–477. doi: 10.1016/j.clon.2005.02. 008.
57. Jamema SV, Mahantshetty U, Andersen E et al. Uncertainties of deformable image registration for dose accumulation of high-dose regions in bladder and rectum in locally advanced cervical cancer. Brachytherapy 2015; 14 (6): 953–962. doi: 10.1016/j.brachy.2015.08.011.
58. Georg P, Pötter R, Georg D et al. Dose effect relationship for late side effects of the rectum and urinary bladder in magnetic resonance image-guided adaptive cervix cancer brachytherapy. Int J Radiat Oncol Biol Phys 2012; 82 (2): 653–657. doi: 10.1016/j.ijrobp.2010.12.029.
59. Swamidas J, Kirisits C, de Brabandere M et al. Image registration, contour propagation and dose accumulation of external beam and brachytherapy in gynecological radiotherapy. Radiother Oncol 2020; 143: 1–11. doi: 10.1016/j.radonc.2019.08.023.
60. Fokdal L, Pötter R, Kirchheiner K et al. Physician assessed and patient reported urinary morbidity after radio-chemotherapy and image guided adaptive brachytherapy for locally advanced cervical cancer. Radiother Oncol 2018; 127 (3): 423–430. doi: 10.1016/j.radonc.2018.05.002.
61. Fokdal L, Tanderup K, Pötter R et al. Risk Factors for ureteral stricture after radiochemotherapy including image guided adaptive brachytherapy in cervical cancer: results from the EMBRACE studies. Int J Radiat Oncol Biol Phys 2019; 103 (4): 887–894. doi: 10.1016/j.ijrobp.2018.11.006.
62. Spampinato S, Fokdal LU, Pötter R et al. Risk factors and dose-effects for bladder fistula, bleeding and cystitis after radiotherapy with imaged-guided adaptive brachytherapy for cervical cancer: an EMBRACE analysis. Radiother Oncol 2021; 158: 312–320. doi: 10.1016/j.radonc.2021.01.019.
63. Spampinato S, Tanderup K, Marinovskij E et al. MRI-based contouring of functional sub-structures of the lower urinary tract in gynaecological radiotherapy. Radiother Oncol 2020; 145: 117–124. doi: 10.1016/j.radonc.2019.12.011.
64. Spampinato S, Fokdal L, Marinovskij E et al. Assessment of dose to functional sub-structures in the lower urinary tract in locally advanced cervical cancer radiotherapy. Phys Med 2019; 59: 127–132. doi: 10.1016/ j.ejmp.2019.01.017.
65. Kirchheiner K, Nout RA, Tanderup K et al. Manifestation pattern of early-late vaginal morbidity after definitive radiation (chemo) therapy and image-guided adaptive brachytherapy for locally advanced cervical cancer: an analysis from the EMBRACE study. Int J Radiat Oncol Biol Phys 2014; 89 (1): 88–95. doi: 10.1016/j.ijrobp.2014.01.032.
66. Berger D, Dimopoulos J, Georg P et al. Uncertainties in assessment of the vaginal dose for intracavitary brachytherapy of cervical cancer using a tandem-ring applicator. Int J Radiat Oncol Biol Phys 2007; 67 (5): 1451–1459. doi: 10.1016/j.ijrobp.2006.11.021.
67. Kirchheiner K, Nout RA, Lindegaard JC et al. Dose-effect relationship and risk factors for vaginal stenosis after definitive radio (chemo) therapy with image-guided brachytherapy for locally advanced cervical cancer in the EMBRACE study. Radiother Oncol 2016; 118 (1): 160–166. doi: 10.1016/j.radonc.2015.12.025.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2023 Číslo 2
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
- Possibilities of Using Metamizole in the Treatment of Acute Primary Headaches
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
Najčítanejšie v tomto čísle
- Ixazomib – lenalidomide – dexamethason in heavily pretreated multiple myeloma patients – case reports
- Liver adenomatosis mimics metastatic liver involvement on FDG-PET/ CT
- Selected trends in head and neck cancer epidemiology in Slovakia – an international comparison
- Image guided adaptive brachytherapy of cervical cancer – practical recommendations