#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A supportive programme for cancer patients based on knowledge of the neurobio logy of cancer


Authors: B. Mravec 1,2
Authors‘ workplace: Fyziologický ústav, LF UK v Bratislave, Slovensko 1;  Biomedicínske centrum SAV, Ústav experimentálnej endokrinológie, Slovenská akadémia vied, Bratislava, Slovensko 2
Published in: Klin Onkol 2025; 38(1): 6-15
Category: Reviews
doi: https://doi.org/10.48095/ccko20256

Overview

Background: The importance of stress in cancer has been noted by physicians since the time of Galen. However, it is only in the last two decades that combined oncological and neuroscientific research has allowed to explore this relationship in an exact way and to describe the pathways and mechanisms that mediate the stimulatory effect of stress on cancer. This adverse effect of stress is mediated mainly by the mediators of the sympathoadrenal system, norepinephrine and epinephrine, which, by activating adrenergic receptors in the tumor micro- and macro-environment, stimulate tumor cell proliferation and neoangiogenesis and inhibit antitumor immunity, reducing the efficacy of standard anticancer therapies. It has also been found that interventions reducing the effects of stress on the body not only improve the quality of life of cancer patients but may also improve their survival. Given the complexity of the impact of stress on the organism, experimental and clinical studies have overwhelmingly focused on investigating the effect of a single intervention reducing the stimulatory influence of the sympathoadrenal system on the cancer process. Purpose: The aim of this opinion article is to highlight the possibility of a synergistic effect of a combination of several interventions limiting the activation of the sympathoadrenal system and, based on the available data, to propose a combination of these interventions that is applicable in the supportive treatment of cancer patients even nowadays. Conclusion: The Protocol Synergy, which includes non-pharmacological interventions aimed at reducing the effects of stress on the cancer patient, has the potential to improve the quality and, in certain patients, the prognosis of their disease. Although the introduction of this protocol into routine clinical practice will require addressing the personnel and financial aspects associated with its implementation, it has the potential to significantly improve the level of care for cancer patients.

Keywords:

psychotherapy – heart rate variability – smoking – stress – exercise – propranolol – cold – sympathoadrenal system


Sources

1. Karamanou M, Tzavellas E, Laios K et al. Melancholy as a risk factor for cancer: a historical overview. J BUON 2016; 21 (3): 756–759.

2. Mravec B. Neurobiology of cancer: role of the nervous system in cancer etiopathogenesis, treatment, and prevention. Switzerland: Springer 2024.

3. Magnon C, Hall SJ, Lin J et al. Autonomic nerve development contributes to prostate cancer progression. Science 2013; 341 (6142): 1236361. doi: 10.1126/science.1236361.

4. Magnon C, Hondermarck H. The neural addiction of cancer. Nat Rev Cancer 2023; 23 (5): 317–334. doi: 10.1038/s41568-023-00556-8.

5. Ondicova K, Mravec B. Role of nervous system in cancer aetiopathogenesis. Lancet Oncol 2010; 11 (6): 596–601. doi: 10.1016/S1470-2045 (09) 70337-7.

6. Eckerling A, Ricon-Becker I, Sorski L et al. Stress and cancer: mechanisms, significance and future directions. Nat Rev Cancer 2021; 21 (12): 767–785. doi: 10.1038/s41568-021-00395-5.

7. Ayala GE, Wheeler TM, Shine HD et al. In vitro dorsal root ganglia and human prostate cell line interaction: redefining perineural invasion in prostate cancer. Prostate 2001; 49 (3): 213–223. doi: 10.1002/pros.1137.

8. Entschladen F, Palm D, Lang K et al. Neoneurogenesis: tumors may initiate their own innervation by the release of neurotrophic factors in analogy to lymphangiogenesis and neoangiogenesis. Med Hypotheses 2006; 67 (1): 33–35. doi: 10.1016/j.mehy.2006.01.015.

9. Mravec B, Blasko F. Neurobiology of cancer – the role of cancer tissue innervation. Klin Onkol 2022; 35 (3): 208–214. doi: 10.48095/ccko2022208.

10. Ben-Eliyahu S, Shakhar G, Page GG et al. Suppression of NK cell activity and of resistance to metastasis by stress: a role for adrenal catecholamines and beta-adrenoceptors. Neuroimmunomodulation 2000; 8 (3): 154–164. doi: 10.1159/000054276.

11. Mravec B, Tibenský M, Horváthová L. Psychoneuroimmunology of cancer – recent findings and perspectives. Klin Onkol 2018; 31 (5): 345–352. doi: 10.14735/amko2018345.

12. Schuller HM, Cole B. Regulation of cell proliferation by beta-adrenergic receptors in a human lung adenocarcinoma cell line. Carcinogenesis 1989; 10 (9): 1753–1755. doi: 10.1093/carcin/10.9.1753.

13. Huang XY, Wang HC, Yuan Z et al. Norepinephrine stimulates pancreatic cancer cell proliferation, migration and invasion via beta-adrenergic receptor-dependent activation of P38/MAPK pathway. Hepatogastroenterology 2012; 59 (115): 889–893. doi: 10.5754/hge11476.

14. Lackovicova L, Banovska L, Bundzikova J et al. Chemical sympathectomy suppresses fibrosarcoma development and improves survival of tumor-bearing rats. Neoplasma 2011; 58 (5): 424–429. doi: 10.4149/neo_2011_05_424.

15. Yang EV, Kim SJ, Donovan EL et al. Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: implications for stress-related enhancement of tumor progression. Brain Behav Immun 2009; 23 (2): 267–275. doi: 10.1016/j.bbi.2008.10.005.

16. Park SY, Kang JH, Jeong KJ et al. Norepinephrine induces VEGF expression and angiogenesis by a hypoxia-inducible factor-1alpha protein-dependent mechanism. Int J Cancer 2011; 128 (10): 2306–2316. doi: 10.1002/ijc.25589.

17. Yang EV, Sood AK, Chen M et al. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP) -2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res 2006; 66 (21): 10357–10364. doi: 10.1158/0008-5472.CAN-06-2496.

18. Sood AK, Bhatty R, Kamat AA et al. Stress hormone-mediated invasion of ovarian cancer cells. Clin Cancer Res 2006; 12 (2): 369–375. doi: 10.1158/1078-0432.CCR-05-1698.

19. Cole SW, Nagaraja AS, Lutgendorf SK et al. Sympathetic nervous system regulation of the tumour microenvironment. Nat Rev Cancer 2015; 15 (9): 563–572. doi: 10.1038/nrc3978.

20. Sloan EK, Priceman SJ, Cox BF et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res 2010; 70 (18): 7042–7052. doi: 10.1158/0008-5472.CAN-10-0522.

21. Palm D, Lang K, Niggemann B et al. The norepinephrine-driven metastasis development of PC-3 human prostate cancer cells in BALB/c nude mice is inhibited by beta-blockers. Int J Cancer 2006; 118 (11): 2744–2749. doi: 10.1002/ijc.21723.

22. Tjioe KC, Cardoso DM, Oliveira SHP et al. Stress hormone norepinephrine incites resistance of oral cancer cells to chemotherapy. Endocr Relat Cancer 2022; 29 (4): 201–212. doi: 10.1530/ERC-20-0460.

23. Chen M, Qiao G, Hylander BL et al. Adrenergic stress constrains the development of anti-tumor immunity and abscopal responses following local radiation. Nat Commun 2020; 11 (1): 1821. doi: 10.1038/s41467-020-15676-0.

24. Deng GH, Liu J, Zhang J et al. Exogenous norepinephrine attenuates the efficacy of sunitinib in a mouse cancer model. J Exp Clin Cancer Res 2014; 33 (1): 21. doi: 10.1186/1756-9966-33-21.

25. Chida Y, Hamer M, Wardle J et al. Do stress-related psychosocial factors contribute to cancer incidence and survival? Nat Clin Pract Oncol 2008; 5 (8): 466–475. doi: 10.1038/ncponc1134.

26. Udumyan R, Montgomery S, Fang F et al. Stress resilience in late adolescence and survival among cancer patients: a Swedish register-based cohort study. Cancer Epidemiol Biomarkers Prev 2019; 28 (2): 400–408. doi: 10.1158/1055-9965.EPI-18-0451.

27. Chen FX, Chen XS, Guo JC et al. Serotonin transporter-linked polymorphic region genotypes in relation to stress conditions among patients with papillary thyroid carcinoma. Int J Clin Exp Pathol 2019; 12 (3): 968–977.

28. Spiegel D, Bloom JR, Kraemer HC et al. Effect of psychosocial treatment on survival of patients with metastatic breast cancer. Lancet 1989; 2 (8668): 888–891. doi: 10.1016/s0140-6736 (89) 91551-1.

29. Fawzy FI, Fawzy NW, Hyun CS et al. Malignant melanoma. Effects of an early structured psychiatric intervention, coping, and affective state on recurrence and survival 6 years later. Arch Gen Psychiatry 1993; 50 (9): 681–689. doi: 10.1001/archpsyc.1993.01820210015002.

30. Xia Y, Tong G, Feng R et al. Psychosocial and behavioral interventions and cancer patient survival again: hints of an adjusted meta-analysis. Integr Cancer Ther 2014; 13 (4): 301–309. doi: 10.1177/1534735414523314.

31. Mirosevic S, Jo B, Kraemer HC et al. „Not just another meta-analysis“: sources of heterogeneity in psychosocial treatment effect on cancer survival. Cancer Med 2019; 8 (1): 363–373. doi: 10.1002/cam4.1895.

32. Chang PY, Chung CH, Chang WC et al. The effect of propranolol on the prognosis of hepatocellular carcinoma: a nationwide population-based study. PLoS One 2019; 14 (5): e0216828. doi: 10.1371/journal.pone.0216828.

33. Barron TI, Connolly RM, Sharp L et al. Beta blockers and breast cancer mortality: a population- based study. J Clin Oncol 2011; 29 (19): 2635–2644. doi: 10.1200/JCO.2010.33.5422.

34. Chang H, Lee SH. Beta-adrenergic receptor blockers and hepatocellular carcinoma survival: a systemic review and meta-analysis. Clin Exp Med 2023; 23 (3): 853–858. doi: 10.1007/s10238-022-00842-z.

35. Lofling LL, Stoer NC, Sloan EK et al. Beta-blockers and breast cancer survival by molecular subtypes: a population-based cohort study and meta-analysis. Br J Cancer 2022; 127 (6): 1086–1096. doi: 10.1038/s41416-022- 01891-7.

36. De Giorgi V, Grazzini M, Benemei S et al. Propranolol for off-label treatment of patients with melanoma: results from a cohort study. JAMA Oncol 2018; 4 (2): e172908. doi: 10.1001/jamaoncol.2017.2908.

37. National Library of Medicine. Studies with propranolol. [online]. Available from: https: //clinicaltrials.gov/search?cond=cancer&intr=Propranolol.

38. Hiller JG, Cole SW, Crone EM et al. Preoperative beta-blockade with propranolol reduces biomarkers of metastasis in breast cancer: a phase II randomized trial. Clin Cancer Res 2020; 26 (8): 1803–1811. doi: 10.1158/1078-0432.CCR-19-2641.

39. Haldar R, Berger LS, Rossenne E et al. Perioperative escape from dormancy of spontaneous micro-metastases: a role for malignant secretion of IL-6, IL-8, and VEGF, through adrenergic and prostaglandin signaling. Brain Behav Immun 2023; 109: 175–187. doi: 10.1016/j.bbi.2023.01.005.

40. Tang J, Li Z, Lu L et al. Beta-adrenergic system, a backstage manipulator regulating tumour progression and drug target in cancer therapy. Semin Cancer Biol 2013; 23 (6 Pt B): 533–542. doi: 10.1016/j.semcancer.2013.08.009.

41. Powe DG, Voss MJ, Zanker KS et al. Beta-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget 2010; 1 (7): 628–638. doi: 10.18632/oncotarget.197.

42. Lemeshow S, Sorensen HT, Phillips G et al. Beta-blockers and survival among Danish patients with malignant melanoma: a population-based cohort study. Cancer Epidemiol Biomarkers Prev 2011; 20 (10): 2273–2279. doi: 10.1158/1055-9965.EPI-11-0249.

43. Spera G, Fresco R, Fung H et al. Beta blockers and improved progression-free survival in patients with advanced HER2 negative breast cancer: a retrospective analysis of the ROSE/TRIO-012 study. Ann Oncol 2017; 28 (8): 1836–1841. doi: 10.1093/annonc/mdx264.

44. Udumyan R, Montgomery S, Fang F et al. Beta-blocker drug use and survival among patients with pancreatic adenocarcinoma. Cancer Res 2017; 77 (13): 3700–3707. doi: 10.1158/0008-5472.CAN-17-0108.

45. Cavalu S, Saber S, Amer AE et al. The multifaceted role of beta-blockers in overcoming cancer progression and drug resistance: extending beyond cardiovascular disorders. FASEB J 2024; 38 (13): e23813. doi: 10.1096/fj.202400725RR.

46. Kotouček P, Enright R, Gregor Sorgerova S et al. Neurobiology of multiple myeloma and its therapeutical use – results of the pilot study with a control arm. Klin Onkol 2023; 37 (4): 287–299.

47. Gitler A, Vanacker L, De Couck M et al. Neuromodulation applied to diseases: the case of HRV biofeedback. J Clin Med 2022; 11 (19): 5927. doi: 10.3390/jcm11195927.

48. Zhu C, Ma H, He A et al. Exercise in cancer prevention and anticancer therapy: efficacy, molecular mechanisms and clinical information. Cancer Lett 2022; 544: 215814. doi: 10.1016/j.canlet.2022.215814.

49. Barešová Z, Lekárová M, Světlák M et al. EHealth support for mental health of oncology patients – is there patient interest? Summary of the first year with the MOÚ MindCare mobile application. Klin Onkol 2023; 36 (Suppl 1): 119–122. doi: 10.48095/ccko2023S119.

50. Pennington KP, Schlumbrecht M, McGregor BA et al. Living well: protocol for a web-based program to improve quality of life in rural and urban ovarian cancer survivors. Contemp Clin Trials 2024; 144: 107612. doi: 10.1016/j.cct.2024.107612.

51. Laing EM, Heinen JM, Acebo de Arriba R et al. Adaptations of interpersonal psychotherapy in psycho-oncology and its effects on distress, depression, and anxiety in patients with cancer: a systematic review. Front Psychol 2024; 15: 1367807. doi: 10.3389/fpsyg.2024.1367807.

52. Pessin H, Dustin A, Behrens MR et al. Meaning-centered psychotherapy training program for cancer care clinicians: efficacy and impact of the first 5 years. Transl Behav Med 2024; 14 (9): 561–570. doi: 10.1093/tbm/ibae026.

53. Mehnert A, Koranyi S, Philipp R et al. Efficacy of the managing cancer and living meaningfully (CALM) individual psychotherapy for patients with advanced cancer: a single-blind randomized controlled trial. Psychooncology 2020; 29 (11): 1895–1904. doi: 10.1002/pon.5521.

54. Magan D, Yadav RK. Psychoneuroimmunology of meditation. Ann Neurosci 2022; 29 (2–3): 170–176. doi: 10.1177/09727531221109117.

55. Gidron Y, De Couck M, Schallier D et al. The relationship between a new biomarker of vagal neuroimmunomodulation and survival in two fatal cancers. J Immunol Res 2018; 2018: 4874193. doi: 10.1155/2018/4874193.

56. De Couck M, Marechal R, Moorthamers S et al. Vagal nerve activity predicts overall survival in metastatic pancreatic cancer, mediated by inflammation. Cancer Epidemiol 2016; 40: 47–51. doi: 10.1016/j.canep.2015. 11.007.

57. Jensen AWP, Carnaz Simoes AM, Thor Straten P et al. Adrenergic signaling in immunotherapy of cancer: friend or foe? Cancers (Basel) 2021; 13 (3): 394. doi: 10.3390/cancers13030394.

58. Wackerhage H, Christensen JF, Ilmer M et al. Cancer catecholamine conundrum. Trends Cancer 2022; 8 (2): 110–122. doi: 10.1016/j.trecan.2021.10.005.

59. Mravec B, Tibensky M. Increased cancer incidence in „cold“ countries: an (un) sympathetic connection? J Tem Biol 2020; 89: 102538. doi: 10.1016/j.jtherbio.2020.102538.

60. Mravec B, Tibensky M, Horvathova L et al. E-cigarettes and cancer risk. Cancer Prev Res (Phila) 2020; 13 (2): 137–144. doi: 10.1158/1940-6207.CAPR-19-0346.

61. Mirosevic S, Jo B, Kraemer HC et al. „Not just another meta-analysis“: sources of heterogeneity in psychosocial treatment effect on cancer survival. Cancer Med 2019; 8 (1): 363–373. doi: 10.1002/cam4.1895.

62. Chen Y, Ahmad M. Effectiveness of adjunct psychotherapy for cancer treatment: a review. Future Oncol 2018; 14 (15): 1487–1496. doi: 10.2217/fon-2017-0671.

63. Hanalis-Miller T, Ricon-Becker I, Sakis N et al. Peri-operative individually tailored psychological intervention in breast cancer patients improves psychological indices and molecular biomarkers of metastasis in excised tumors. Brain Behav Immun 2024; 117: 529–540. doi: 10.1016/j.bbi.2024.02.009.

Labels
Paediatric clinical oncology Surgery Clinical oncology

Article was published in

Clinical Oncology

Issue 1

2025 Issue 1
Popular this week
Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#