#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Importance of circulating tumor DNA in colorectal cancer


Authors: B. Tolmáči 1;  A. Řehulková 2,3;  P. Žuff 1;  J. Klein 1,4,5
Authors‘ workplace: Chirurgické oddělení, Krajská nemocnice T. Bati, Zlín, Česká republika 1;  I. chirurgická klinika LF UP a FN Olomouc, Česká republika 2;  Ústav molekulární a translační medicíny, LF UP a FN Olomouc, Česká republika 3;  Onkologická klinika LF UP a FN Olomouc, Česká republika 4;  Fakulta zdravotníctva, Trenčianska univerzita Alexandra Dubčeka v Trenčíne, Slovenská republika 5
Published in: Klin Onkol 2025; 38(1): 32-37
Category: Reviews
doi: https://doi.org/10.48095/ccko202532

Overview

Background: Space still exists in the management of patients with colorectal cancer (CRC) for improving risk stratification and thus the precision of treatment tailoring. Quite promising in this regard are biomarkers acquired via liquid biopsy, which is a non-invasive method of body fluid draw, most commonly peripheral blood. A variety of biomarkers associated with the tumor are analyzed, which can have either prognostic or predictive value. Circulating tumor DNA (ctDNA) is one of the most explored tumor biomarkers. Initially, its utility spectrum was only in advanced or metastatic cancers and consisted of molecular profiling and detecting acquired resistance to treatment. Nowadays, the use of circulating tumor DNA has shifted to earlier cancer stages, where it can identify minimal residual disease or diagnose colorectal cancer early. Existing studies show promising potential of these biomarkers, but more information needs to be gathered and information from ongoing studies needs to be obtained in order to use them in everyday practice. Aim: In this review article, we will discuss ctDNA, its aspects, diag- nostic possibilities and current use in CRC.

Keywords:

surveillance – colorectal cancer – Prognosis – Circulating tumor DNA – minimal residual disease


Sources

1. Bray F, Ferlay J, Soerjomataram I et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68 (6): 394–424. doi: 10.3322/caac.21492.

2. ÚZIS. Novotvary 2019–2021 ČR. [online]. Dostupné z: chrome-extension: //efaidnbmnnnibpcajpcglclefindmkaj/https: //www.uzis.cz/res/f/008447/novotvary2019-2021.pdf.

3. Cardoso R, Guo F, Heisser T et al. Overall and stage-specific survival of patients with screen-detected colorectal cancer in European countries: a population-based study in 9 countries. Lancet Reg Health Eur 2022; 21: 100458. doi: 10.1016/j.lanepe.2022.100458.

4. Sung H, Ferlay J, Siegel RL et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71 (3): 209–249. doi: 10.3322/caac.21660.

5. Siegel RL, Miller KD, Goding Sauer A et al. Colorectal cancer statistics, 2020. CA Cancer J Clin 2020; 70 (3): 145–164. doi: 10.3322/caac.21601.

6. Storli PE, Dille-Amdam RG, Skjærseth GH et al. Cumulative incidence of first recurrence after curative treatment of stage I-III colorectal cancer. Competing risk analyses of temporal and anatomic patterns. Acta Oncol 2023; 62 (12): 1822–1830. doi: 10.1080/0284186X.2023.2269644.

7. Böckelman C, Engelmann BE, Kaprio T et al. Risk of recurrence in patients with colon cancer stage II and III: a systematic review and meta-analysis of recent literature. Acta Oncol 2015; 54 (1): 5–16. doi: 10.3109/0284186X.2014.975839.

8. Zhou H, Zhu L, Song J et al. Liquid biopsy at the frontier of detection, prognosis and progression monitoring in colorectal cancer. Mol Cancer 2022; 21 (1): 86. doi: 10.1186/s12943-022-01556-2.

9. Reinter T, Vesterman Henriksen T, Christensen E et al. Analysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to III colorectal cancer. JAMA Oncol 2019; 5 (8): 1124–1131. doi: 10.1001/jamaoncol.2019.0528.

10. Ihnát P, Srovnal J, Hrubovčák J et al. Detection and clinical significance of circulating tumour cells in patients with colorectal carcinoma. Rozhl Chir 2023; 102 (10): 376–380. doi: 10.33699/PIS.2023.102.10.376-380.

11. Sorbini M, Carradori T, Togliatto GM et al. Technical advances in circulating cell-free DNA detection and analysis for personalized medicine in patients‘ care. Biomolecules 2024; 14 (4): 498. doi: 10.3390/biom14040498.

12. Schwarzenbach H, Boon DSB, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 2011; 11 (6): 426–437. doi: 10.1038/nrc3066.

13. Phallen J, Sausen M, Adleff V et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med 2017; 9 (403): eaan2415. doi: 10.1126/scitranslmed.aan2415.

14. Emlen W, Mannik M. Kinetics and mechanisms for removal of circulating single-stranded DNA in mice. J Exp Med 1978; 147 (3): 684–699. doi: 10.1084/jem.147.3.684.

15. Peng M, Chen C, Hulbert A et al. Non-blood circulating tumor DNA detection in cancer. Oncotarget 2017; 8 (40): 69162–69173. doi: 10.18632/oncotarget.19942.

16. Wan JCM, Massie C, Garcia-Corbacho J et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 2017; 17 (4): 223–238. doi: 10.1038/nrc.2017.7.

17. Diehl F, Schmidt K, Choti MA et al. Circulating mutant DNA to assess tumor dynamics. Nat Med 2008; 14 (9): 958–990. doi: 10.1038/nm.1789.

18. Mandel P, Metais P. Nuclear acids in human blood plasma. C R Seances Soc Biol Fil 1948; 142 (3–4): 241–243.

19. Leon SA, Shapiro B, Sklaroff DM et al. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 1977; 37 (3): 646–650.

20. Stroun M, Anker P, Maurice P et al. Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology 1989; 46 (5): 318–322. doi: 10.1159/000226740.

21. Bettegowda C, Sausen M, Leary RJ et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 2014; 6 (224): 224ra24. doi: 10.1126/scitranslmed.3007094.

22. Tie J, Wang Y, Tomasetti C et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med 2016; 8 (346): 346ra92. doi: 10.1126/scitranslmed.aaf6219.

23. Mouliere F, Chandrananda D, Piskorz AM et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med 2018; 10 (466): eaat4921. doi: 10.1126/scitranslmed.aat4921.

24. Lee J, Kim M, Seong M et al. Plasma vs. serum in circulating tumor DNA measurement: characterization by DNA fragment sizing and digital droplet polymerase chain reaction. Clin Chem Lab Med 2020; 58 (4): 527–532. doi: 10.1515/cclm-2019-0896.

25. Quan PL, Suazade M, Brouzes E. dPCR: a technology review. Sensors (Basel) 2018; 18 (4): 1271. doi: 10.3390/s18041271.

26. Diehl F, Li M, He Y et al. BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions. Nat Methods 2006; 3 (7): 551–559. doi: 10.1038/nmeth898.

27. Alizadeh AA, Aranda V, Bardelli A et al. Toward understanding and exploiting tumor heterogenity. Nat med 2015; 21 (8): 846–853. doi: 10.1038/nm.3915.

28. Liu S, Wang J. Current and future perspectives of cell- -free DNA in liquid biopsy. Curr Issues Mol Biol 2022; 44 (6): 2695–2709. doi: 10.3390/cimb44060184.

29. Bai Y, Wang Z, Liu Z et al. Technical progress in circulating tumor DNA analysis using next generation sequencing. Mol Cell Probes 2020; 49: 101480. doi: 10.1016/j.mpc.2019.101480.

30. Gale D, Lawson ARJ, Howarth K et al. Development of a highly sensitive liquid biopsy platform to detect clinically-relevant cancer mutations at low allele fractions in cell-free DNA. PLoS One 2018; 13 (3): e0194630. doi: 10.1371/journal.pone.0194630.

31. Kinde I, Wu J, Papadopoulos N et al. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A 2011; 108 (23): 9530–9535. doi: 10.1073/pnas.1105422108.

32. Newman AM, Bratman SV, To J et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 2014; 20 (5): 548–554. doi: 10.1038/nm.3519.

33. Fangman B, Raghav K, Kopetz S. Circulating tumor DNA as a marker of minimal residual disease. Oncology (Williston Park) 2022; 36 (10): 600–603. doi: 10.46883/2022.25920975.

34. Abbosh C, Swanton C, Birkbak NJ. Clonal haematopoiesis: a source of biological noise in cell-free DNA analyses. Ann Oncol 2019; 30 (3): 358–359. doi: 10.1093/annonc/mdy552.

35. Chakrabarti S, Peterson CY, Sriram D et al. Early stage colon cancer: current treatment standards, evolving paradigms, and future directions. World J Gastrointest Oncol 2020; 12 (8): 808–832. doi: 10.4251/wjgo.v12.i8.808.

36. Punt CJA, Koopman M, Vermeulen L. From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat Rev Clin Oncol 2017; 14 (4): 235–246. doi: 10.1038/nrclinonc.2016.171.

37. Nikbakht H, Jessa S, Sukhai MA et al. Latency and interval therapy affect the evolution in metastatic colorectal cancer. Sci Rep 2020; 10 (1): 581. doi: 10.1038/s41598-020-57476-y.

38. Gong J, Hendifar A, Gangi A et al. Clinical applications of minimal residual disease assessments by tumor-informed and tumor-uninformed circulating tumor DNA in colorectal cancer. Cancers (Basel) 2021; 13 (18): 4547. doi: 10.3390/cancers13184547.

39. Parikh AR, Van Seventer EE, Siravegna G et al. Minimal residual disease detection using a plasma-only circulating tumor DNA assay in patients with colorectal cancer. Clin Cancer Res 2021; 27 (20): 5586–5594. doi: 10.1158/1078-0432.CCR-21-0410.

40. Hewiston P, Glasziou P, Watson E et al. Cochrane systematic review of colorectal cancer screening using the fecal occult blood test (hemoccult): an update. Am J Gastroenterol 2008; 103 (6): 1541–1549. doi: 10.1111/j.1572-0241.2008.01875.x.

41. Wang X, Shi X, Zeng P et al. Circulating cell free DNA as the diagnostic marker for colorectal cancer: a systematic review and meta-analysis. Oncotarget 2018; 9 (36): 24514–24524. doi: 10.18632/oncotarget.25314.

42. Danese E, Montagnana M. Epigenetics of colorectal cancer: emerging circuating diagnostic and prognostic biomarkers. Ann Transl Med 2017; 5 (13): 279. doi: 10.21037/atm.2017.04.45.

43. Payne SR. From discovery to the clinic: the novel DNA methylation biomarker (m) SEPT9 for the detection of colorectal cancer in blood. Epigenomics 2010; 2 (4): 575–585. doi: 10.2217/epi.10.35.

44. Wu D, Zhou G, Jin P et al. Detection of colorectal cancer using a simplified SEPT9 gene methylation assay is a reliable method for opportunistic screening. J Mol Diagn 2016; 18 (4): 535–545. doi: 10.1016/j.jmoldx.2016.02. 005.

45. Imperiale TF, Ransohoff DF, Itzkowitz SH et al. Multitarget stool DNA testing for colorectal-cancer screening. N Eng J Med 2014; 370 (14): 1287–1297. doi: 10.1056/NEJMoa1311194.

46. Cohen JD, Li L, Wang Y et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018; 359 (6378): 926–930. doi: 10.1126/science.aar3247.

47. Basnet S, Zhang Z, Liao W et al. The prognostic value of circulating cell-free DNA in colorectal cancer: a meta-analysis. J Cancer 2016; 7 (9): 1105–1113. doi: 10.7150/jca.14801.

48. Luskin MR, Murakami MA, Manalis SR et al. Targeting minimal residual disease: a path to cure? Nat Rev Cancer 2019; 18 (4): 255–263. doi: 10.1038/nrc.2017.125.

49. Tie J, Cohen JD, Serigne NL et al. Prognostic significance of postsurgery circulating tumor DNA in nonmetastatic colorectal cancer: individual patient pooled analysis of three cohort studies. Int J Cancer 2021; 148 (4): 1014–1026. doi: 10.1002/ijc.33312.

50. Tie J, Cohen JD, Wang Y et al. Circulating tumor DNA analyses as markers of recurrence risk and benefit of adjuvant therapy for stage III colon cancer. JAMA Oncol 2019; 5 (12): 1710–1717. doi: 10.1001/jamaoncol.2019. 3616.

51. Tarazona N, Gimeno-Valiente F, Gambardella V et al. Targeted next-generation sequencing of circulating-tumor DNA for tracking minimal residual disease in localized colon cancer. Ann Oncol 2019; 30 (11): 1804–1812. doi: 10.1093/annonc/mdz390.

52. Elferink MAG, de Jong KP, Klaase JM et al. Metachronous metastases from colorectal cancer: a population-based study in North-East Netherlands. Int J Colorectal Dis 2015; 30 (2): 205–212. doi: 10.1007/s00384-014-2085-6.

53. Slater S, Bryant A, Chen H et al. ctDNA guided adjuvant chemotherapy versus standard of care adjuvant chemotherapy after curative surgery in patients with high risk stage II or stage III colorectal cancer: a multi-centre, prospective, randomised control trial (TRACC Part C). BMC Cancer 2023; 23 (1): 257. doi: 10.1186/s12885-023-10699-4.

54. Tie J, Cohen JD, Lahouel K et al. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer. N Engl J Med 2022; 386 (24): 2261–2272. doi: 10.1056/NEJMoa2200075.

55. Taniguchi H, Nakamura Y, Kotani D et al. CIRCULATE-Japan: circulating tumor DNA-guided adaptive platform trials to refine adjuvant therapy for colorectal cancer. Cancer Sci 2021; 112 (7): 2915–2920. doi: 10.1111/cas.14926.

56. Kotani D, Oki E, Nakamura Y et al. Molecular residual disease and efficacy of adjuvant chemotherapy in patients with colorectal cancer. Nat Med 2023; 29 (1): 127–134. doi: 10.1038/s41591-022-02115-4.

Labels
Paediatric clinical oncology Surgery Clinical oncology

Article was published in

Clinical Oncology

Issue 1

2025 Issue 1
Popular this week
Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#