Magnetic Resonance Relaxometry in Multiple Sclerosis – T2 Relaxation Time Measurement in Central Gray Matter
Authors:
Andrea Burgetová 1
; Z. Seidl 1,2; M. Vaněčková 1; J. Krásenský 1; D. Horáková 3
Authors place of work:
Radiodiagnostická klinika 1. LF UK a VFN v Praze
1; Vyšší zdravotnická škola, Praha
2; Neurologická klinika 1. LF UK a VFN v Praze
3
Published in the journal:
Cesk Slov Neurol N 2010; 73/106(1): 26-31
Category:
Original Paper
Summary
Objective:
To establish the increased amount of iron deposits in central grey matter structures in patients suffering from multiple sclerosis (MS). MR relaxometry detects iron in normal-appearing grey matter, that is, in advance of any visible MRI manifestation of iron deposits, or T2 hypointensity. A further goal was to correlate T2 relaxation time to the volume of T2 hyperintense lesions-lesion load (LL).
Materials and method:
347 patients with clinically defined MS and 117 controls were examined with MRI, using gradient and spin echo sequence (GraSE) for the calculation of T2 relaxation time. The two cohorts were age- and sex-matched in T2 correlation. Further, the MS patients were divided into two subgroups according to LL (LL < 2 cm3: 140 patients, LL > 5 cm3: 80 patients) and were T2 correlated in these age-matched groups.
Results:
We established a statistically significant increase of iron deposits in ncl. caudatus bilaterally (left p = 0.004; right p = 0.033) and in left putamen (p = 0.006) in MS patients as opposed to healthy controls. Our measurements indicated no shortening of T2 in either thalamus. Correlation of LL with T2 demonstrated that in the group with LL < 2 cm3 the T2 shortening is statistically more significant than in patients with LL > 5 cm3 in putamen bilaterally (left p < 0.001; right p = 0.006).
Conclusions:
There is an increase of iron deposits in the basal ganglia of MS patients in comparison with controls. Further, there is an increase of iron deposits in the basal ganglia of low LL patients in comparison with high LL patients. The changes of iron content in the brain support our hypothesis that there exists a neurodegenerative component in the disease.
Key words:
multiple sclerosis – iron deposit – magnetic resonance imaging –T2 relaxometry
Zdroje
1. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998; 338(5): 278–285.
2. Havrdová E. Roztroušená skleróza. Cesk Slov Neurol N 2008; 71/104(2):121–132.
3. Seidl Z, Obenberger J, Daneš J, Viták T, Krásenský J,Belšán T. Využití magnetizačního transferu při zobrazování magnetickou rezonancí v CNS. Cesk Radiol 1997; 51(4): 223–226.
4. Vaněčková M, Seidl Z. Roztroušená skleróza mozkomíšní a magnetická rezonance: současnost a nové trendy. Cesk Slov Neurol N 2008; 71/104(6): 664–672.
5. Bakshi R, Shaikh ZA, Janardhan V. MRI T2 shortening (“black T2”) in multiple sclerosis: frequency, location, and clinical correlation. Neuroreport 2000; 11(1): 15–21.
6. Bakshi R, Dmochowski J, Shaikh ZA, Jacobs L. Gray matter T2 hypointensity is related to plaques and atrophy in the brains of multiple sclerosis patients. J Neurol Sci 2001; 185(1): 19–26.
7. Bermel RA, Puli SR, Rudick RA, Weinstock‑Guttman B,Fisher E, Munschauer FE jr et al. Prediction of longitudinal brain atrophy in multiple sclerosis by gray matter magnetic resonance imaging T2 hypointensity. Arch Neurol 2005; 62(9):1371–1376.
8. Drayer BP, Burger P, Hurwitz B, Dawson B, Cain J, Leong J et al. Magnetic resonance imaging in multiple sclerosis: decreased signal in thalamus and putamen. Ann Neurol 1987; 22(4): 546–550.
9. Schenck JF, Zimmerman EA. High‑field magnetic resonance imaging of brain iron: birth of a biomarker? MNR Biomed 2004; 17(7): 433–445.
10. Gutteridge JM. Iron and oxygen radicalsin brain. Ann Neurol 1992; 32 (Suppl): S16–S21.
11. Curtis AR, Fey C, Morris CM, Bindoff LA, Ince PG, Chinnery PF et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult‑onset basal ganglia disease. Nat Genet 2001; 28(4): 350–354.
12. Pujol J, Junqué C, Vendrell P, Grau JM, Martí‑Vilalta JL, Olivé C et al. Biological significance of iron‑related magnetic resonance imaging changes in the brain. Arch Neurol 1992; 49(7): 711–717.
13. Thompson KJ, Shoham S, Connor JR. Iron and neurodegenerative disorders. Brain Res Bull 2001; 55(2): 155–164.
14. Bermel RA, Innus MD, Tjoa CV, Bakshi R. Selective caudate atrophy in multiple sclerosis: a 3D MRI parcellation study. Neuroreport 2003; 14(3): 335–339.
15. Cifelli A, Arridge M, Jezzard P, Esiri MM, Palace J, Matthews PM. Thalamic neurodegeneration in multiple sclerosis. Ann Neurol 2002; 52(5): 650–653.
16. Neema M, Stankiewicz J, Arora A, Dandamudi VS, Batt CE, Zachary D et al. T1-and T2‑based MRI measures of diffuse gray matter and white matter damage in patients with multiple sclerosis. J Neuroimaging 2007; 17 (Suppl 1): S16–S21.
17. Vaněčková M, Seidl Z, Krásenský J, Obenberger J,Havrdová E, Viták T, Daneš J. Nové trendy v zobrazování magnetickou rezonancí u roztroušené sklerózy mozkomíšní. Technika MR volumometrie vyvinutá a prováděná naším pracovištěm. Cesk Radiol 2002; 56(6): 327–330.
18. Vaněčková M, Seidl Z, Krásenský J, Obenberger J.,Havrdová E., Viták T et al. Sledování objemu ložisek u roztroušené sklerózy mozkomíšní magnetickou rezonancí (MRI study of lesion load in multiple sclerosis). Cesk Slov Neurol N 2002; 65/98(3): 175–179.
19. Chen JC, Hardy PA, Clauberg M, Josuu JG, Parravano J, Deck JH et al. T2 values in the human brain:comparison with quantitative assays of iron and ferritin. Radiology 1989; 173: 521–526.
20. Vymazal J, Brooks RA, Baumgarner C, Tran V, Katz D, Bulte JW et al. The relation between brain iron and NMR relaxation times: an in vitro study. Magn Reson Med 1996; 35: 56–61.
21. Gotz ME, Double K, Gerlach M, Youdim MB, Riederer P. The relevance of iron in the pathogenesis of Parkinson’s disease. Ann N Y Acad Sci 2004; 1012: 193–208
22. Metafratzi Z, Argyropoulou MI, Kiortsis DN, Tsampoulas C, Chaliassos N, Efremidis SC. T(2) relaxation rate of basal ganglia and cortex in patients with thalassemia major. Br J Radiol 2001; 74:407–410.
23. Vymazal J, Righini A, Brooks RA, Canesi M, Mariani C, Leopardi M et al. T1 and T2 in the brain of healthy subjects, patients with Parkinson’s disease, and patients with multiple systom atrophy: relation to iron content. Radiology 1999; 211: 489–495.
24. Hallgren B, Sourander P. The effect of age on the non‑haemin iron in the human brain. J Neurochem 1958; 3: 41–51
25. Schenker C, Meier D, Wichmann W, Boesiger P, Valavanis A. Age distribution and iron dependency of The T2 relaxation time in the globus pallidus and putamen. Neuroradiology 1993; 35(2): 119–124.
26. Castaigne P, Lhermitte F, Buge A, Escourolle R, Haur JJ, Lyon‑Caen O. Paramedian thalamic and midbrain infarct: clinical and neuropathological study. Ann Neurol 1981; 10: 127–148.
27. Bartzokis G, Tishler TA, Lu PH, Villablanca P, Altushuler LL, Carter M et al. Brain ferritin iron may invluence age‑and gender related risk of neurodegeneration. Neurobiol Aging 2007; 28(3): 414–423.
28. Connor CR, Snyder BS, Beard JL, Fine RE, Mufson EJ. Regional distribution of iron and iron‑regulatory proteins in the brain in aging and Alzheimer’s disease. J Neurosci Res 1992;31:327–335.
29. Honda K, Casadesus G, Petersen RB, Perry G, Smith MA. Oxidative stress and redox‑active iron in Alzheimer’s disease. Ann N Y Acad Sci 2004; 1012: 179–182.
30. Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG, Smith RA. 4-hydroxynonenal‑derived advanced lipid peroxidationand products are increased in Alzheimer’s disease. J Neurochem 1997; 68: 2092–2097.
31. Smith MA, Perry G. Free radical damage, iron, and Alzheimer’s disease. J Neurol Sci 1995; 134(Suppl): S92–94.
32. Berg D, Hochstrasser H. Iron netabolism in Parkinsonian syndromes. Mov Disord 2006; 21: 1299–1310.
33. Hirsch EC, Faucheux BA. Iron metabolism and Parkinson’s disease. Mov disord 1998; 13 (Suppl 1): 39–45.
34. Sofic E, Paulus W, Jellinger K, Riederer P, Youdim MB. Selective increase of iron in substantia nigra zona compamta of Parkinsonian brains. J Neurochem 1991; 56(3): 978–982.
35. Jenner P, Olanow CW. Oxidative stress and the pathogenesis of Parkinson’s disease. Neurolgy 1996; 47 (Suppl 3): S161–S170.
36. Bartzokis G, Cummings J, Perlman S, Hance DB, Mintz J. Increased basal ganglia iron levels in Huntington disease. Arch Neurol 1999; 56(5): 569–574.
37. Vymazal J, Klempír J, Jech R, Zidovská J, Syka M, Růzicka E et al. MR relaxometry in Huntington’s disease: correlation between imaging, genetic and clinical parameters. J Neurol Sci 2007; 263(1–2): 20–25.
38. Hájek M, Adamovicová M, Herynek V, Skoch A, Jírů F, Krepelová A et al. MR relaxometry and 1H MR spectroscopy for the determination of iron and metabolite concentrations in PKAN patients. Eur Radiol 2005; 15(5): 1060–1068.
39. Kabuto H, Yokoi I, Ogawa N. Melatonin inhibits iron‑induced epileptic discharges in rats suppressing peroxidation. Epilepsia 1998; 39(3): 237–243.
40. Craelius W, Migdal WM Lussenhop CP, Sugar A, Mihalakis I. Iron deposits surrounding multiple sclerosis plaques. Arch Pathol Lab Med 1982; 106(8): 397–399.
41. Drayer B, Burger P, Hurwitz B, Dawson D, Cain J. Reduced signal intensity on MR images of thalamus and putamen in multiple sclerosis: increased iron content? AJR Am J Roentgenol 1987; 149(2): 357–363.
42. Bakshi R, Benedict RH, Bermel RA, Caruthers SD,Puli SR, Tjoa CW et al. T2 hypointensity in the deep gray matter of patients with multiple sclerosis: a quantitative magnetic resonance imaging study. Arch Neurol 2002; 59(1): 62–68.
43. Brass SD, Benedict RH, Weinstock‑Guttman B, Munschauer F, Bakshi R. Cognitive impairment is associated with subcortical magnetic resonance imaging gray matter T2 hypointensity in multiple sclerosis. Mult Scler 2006; 12(4): 437–444.
44. Tjoa CW, Benedict RH, Weinstock‑Guttman B, Fabiano AJ, Bakshi R. MRI T2 hypointensity of the dentate nucleus is related to ambulatory impairment in multiple sclerosis. J Neurol Sci 2005; 234(1–2): 17–24.
45. Madarász M, Tömböl T, Hajdu F, Somogyi G. Quantitative histological study on the thalamic ventro‑basal complex of the cat. Anat Embryol 1983; 166(2): 291–306.
46. Vaneckova M, Seidl Z, Krasensky J, Havrdova E, Horakova D, Dolezal O et al. Patients’ stratification and correlation of brain MRI parameters to disability progression in multiple sclerosis. Eur Neurol 2009; 61(5): 278–284.
47. Bowern N, Ramshaw I, Clark I, Doherty PC. Inhibition of autoimmune neuropathological process by treatment with an iron‑chelating agent. J Exp Med 1984; 160(5): 1532–1543.
48. Willenborg DO, Bowern N, Danta G, Doherty PC.Inhibition of allergic encephalomyelitis by the iron‑chelating agent desferrioxamine: differential effect depending on type sensitizing encephalitogen. J Neuroimmunol 1988; 17(2): 127–135.
Štítky
Paediatric neurology Neurosurgery NeurologyČlánok vyšiel v časopise
Czech and Slovak Neurology and Neurosurgery
2010 Číslo 1
- Memantine Eases Daily Life for Patients and Caregivers
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Metamizole vs. Tramadol in Postoperative Analgesia
Najčítanejšie v tomto čísle
- Sco2 Protein Deficiency-Based Mitochondrial Encephalomyopathy with the SMA‑like Picture of Neurogenic Muscle Atrophy – Case Reports
- Olfactory Testing in Neurological Diseases using Odourized Markers Test
- Congenital Myasthenic Syndromes – Case Reports
- Evoked Responses and Electromyography in Intraoperative Monitoring in Neurosurgery