Spinocerebellar Ataxia 7 – a Case Report
Authors:
V. Majerová 1; Z. Mušová 2; A. Zumrová 3; E. Růžička 1; J. Roth 1
Authors place of work:
Neurologická klinika a Centrum klinických neurověd, UK v Praze, 1. LF a VFN v Praze
1; Ústav biologie a lékařské genetiky 2. LF UK a FN v Motole a Centrum hereditárních ataxií FN v Motole, Praha
2; Klinika dětské neurologie 2. LF UK a FN v Motole a Centrum hereditárních ataxií FN v Motole, Praha
3
Published in the journal:
Cesk Slov Neurol N 2013; 76/109(2): 225-228
Category:
Case Report
Summary
Spinocerebellar ataxia 7 (SCA7) is a rare autosomal dominant neurodegenerative disorder caused by expansion of an unstable CAG triplet repeats encoding the polyglutamine chain in the corresponding protein, ataxin-7 on the 3rd chromosome. Typical clinical signs include cerebellar syndrome and visual impairment due to progressive macular dystrophy. In the Czech Republic, 1 case only of SCA7 has been diagnosed so far. The following case report presents a case of a 48 years old male patient with slow progression of typical signs of SCA7, except for retinal degeneration. The first symptom, visual disturbance, developed 15 years ago, followed later by balance and coordination disorder. At the age of 48 years, visual impairment remains the main complaint. During neurological examination, we identified mild cerebellar and pyramidal syndrome. The patient’s mother died at the age of 65 years from an unknown neuropsychiatric disorder. Due to the rare occurrence of this disease, SCA7 in our patient was initially not considered as part of differential diagnosis and the delay between the first neurological examination and the diagnosis was almost 8 years.
Key words:
spinocerebellar ataxia – cerebellar syndrome – retinal degeneration
Zdroje
1. Van de Warrenburg BP, Sinke RJ, Verschuuren-Bemelmans CC, Scheffer H, Brunt ER, Ippel PF et al. Spinocerebellar ataxias in the Netherlands: prevalence and age at onset variance analysis. Neurology 2002; 58(5): 702–708.
2. Erichsen AK, Koht J, Stray-Pedersen A, Abdelnoor M, Tallaksen CM. Prevalence of hereditary ataxia and spastic paraplegia in southeast Norway: a population--based study. Brain 2009; 132 (Pt 6): 1577–1588.
3. Leone M, Bottacchi E, D‘Alessandro G, Kustermann S. Hereditary ataxias and paraplegias in Valle d‘Aosta, Italy: a study of prevalence and disability. Acta Neurol Scand 1995; 91(3): 183–187.
4. Silva MC, Coutinho P, Pinheiro CD, Neves JM, Serrano P. Hereditary ataxias and spastic paraplegias: methodological aspects of a prevalence study in Portugal. J Clin Epidemiol 1997; 50(12): 1377–1384.
5. Duenas AM, Goold R, Giunti P. Molecular pathogenesis of spinocerebellar ataxias. Brain 2006; 129 (Pt 6): 1357–1370.
6. Storey E, Bahlo M, Fahey M, Sisson O, Lueck CJ, Gardner RJ. A new dominantly inherited pure cerebellar ataxia, SCA 30. J Neurol Neurosurg Psychiatry 2009; 80(4): 408–411.
7. Bandmann O, Singleton AB. Yet another spinocerebellar ataxia: the saga continues. Neurology 2008; 71(8): 542–543.
8. Ishikawa K, Sato N, Niimi Y, Amino T, Mizusawa H. Spinocerebellar ataxia type 31. Rinsho Shinkeigaku 2010; 50(11): 985–987.
9. Klockgether T, Paulson H. Milestones in ataxia. Mov Disord 2011; 26(6): 1134–1141.
10. Schols L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 2004; 3(5): 291–304.
11. Soong BW, Paulson HL. Spinocerebellar ataxias: an update. Curr Opin Neurol 2007; 20(4): 438–446.
12. Teive HA. Spinocerebellar ataxias. Arq Neuropsiquiatr 2009; 67(4): 1133–1142.
13. Paulson HL. The spinocerebellar ataxias. J Neuroophthalmol 2009; 29(3): 227–237.
14. Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum 2005; 4(1): 2–6.
15. Durr A, Brice A. Clinical and genetic aspects of spinocerebellar degeneration. Curr Opin Neurol 2000; 13(4): 407–413.
16. Klockgether T, Ludtke R, Kramer B, Abele M, Bürk K, Schöls L et al. The natural history of degenerative ataxia: a retrospective study in 466 patients. Brain 1998; 121 (Pt 4): 589–600.
17. Benomar A, Krols L, Stevanin G, Cancel G, LeGuern E, David G et al. The gene for autosomal dominant cerebellar ataxia with pigmentary macular dystrophy maps to chromosome 3p12-p21.1. Nat Genet 1995; 10(1): 84–88.
18. Gouw LG, Kaplan CD, Haines JH, Digre KB, Rutledge SL, Matilla A et al. Retinal degeneration characterizes a spinocerebellar ataxia mapping to chromosome 3p. Nat Genet 1995; 10(1): 89–93.
19. Holmberg M, Johansson J, Forsgren L, Heijbel J, Sandgren O, Holmgren G. Localization of autosomal dominant cerebellar ataxia associated with retinal degeneration and anticipation to chromosome 3p12-p21.1. Hum Mol Genet 1995; 4(8): 1441–1445.
20. David G, Abbas N, Stevanin G, Dürr A, Yvert G, Cancel G et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 1997; 17(1): 65–70.
21. Benton CS, de Silva R, Rutledge SL, Bohlega S, Ashizawa T, Zoghbi HY. Molecular and clinical studies in SCA-7 define a broad clinical spectrum and the infantile phenotype. Neurology 1998; 51(4): 1081–1086.
22. Del-Favero J, Krols L, Michalik A, Theuns J, Löfgren A, Goossens D et al. Molecular genetic analysis of autosomal dominant cerebellar ataxia with retinal degeneration (ADCA type II) caused by CAG triplet repeat expansion. Hum Mol Genet 1998; 7(2): 177–186.
23. Nardacchione A, Orsi L, Brusco A, Franco A, Grosso E, Dragone E et al. Definition of the smallest pathological CAG expansion in SCA7. Clin Genet 1999; 56(3): 232–234.
24. Stevanin G, Giunti P, Belal GD, Dürr A, Ruberg M, Wood N et al. De novo expansion of intermediate alleles in spinocerebellar ataxia 7. Hum Mol Genet 1998; 7(11): 1809–1813.
25. Giunti P, Stevanin G, Worth PF, David G, Brice A, Wood NW. Molecular and clinical study of 18 families with ADCA type II: evidence for genetic heterogeneity and de novo mutation. Am J Hum Genet 1999; 64(6): 1594–1603.
26. Johansson J, Forsgren L, Sandgren O, Brice A, Holmgren G, Holmberg M. Expanded CAG repeats in Swedish spinocerebellar ataxia type 7 (SCA7) patients: effect of CAG repeat length on the clinical manifestation. Hum Mol Genet 1998; 7(2): 171–176.
27. David G, Durr A, Stevanin G, Cancel G, Abbas N, Benomar A et al. Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7). Hum Mol Genet 1998; 7(2): 165–170.
28. Harding AE. The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. A study of 11 families, including descendants of the ‚the Drew family of Walworth‘. Brain 1982; 105 (Pt 1): 1–28.
29. Enevoldson TP, Sanders MD, Harding AE. Autosomal dominant cerebellar ataxia with pigmentary macular dystrophy. A clinical and genetic study of eight families. Brain 1994; 117 (Pt 3): 445–460.
30. Gouw LG, Digre KB, Harris CP, Haines JH, Ptacek LJ. Autosomal dominant cerebellar ataxia with retinal degeneration: clinical, neuropathologic, and genetic analysis of a large kindred. Neurology 1994; 44(8): 1441–1447.
31. Aleman TS, Cideciyan AV, Volpe NJ, Stevanin G, Brice A, Jacobson SG. Spinocerebellar ataxia type 7 (SCA7) shows a cone-rod dystrophy phenotype. Exp Eye Res 2002; 74(6): 737–745.
32. Stevanin G, Durr A, Brice A. Clinical and molecular advances in autosomal dominant cerebellar ataxias: from genotype to phenotype and physiopathology. Eur J Hum Genet 2000; 8(1): 4–18.
33. Lebre AS, Brice A. Spinocerebellar ataxia 7 (SCA7). Cytogenet Genome Res 2003; 100(1–4): 154–163.
34. Konigsmark BW, Weiner LP. The olivopontocerebellar atrophies: a review. Medicine (Baltimore) 1970; 49: 227–241.
35. Harding AE. Clinical features and classification of inherited ataxias. Adv Neurol 1993; 61: 1–14.
36. Benomar A, Le Guern E, Durr A, Ouhabi H, Stevanin G, Yahyaoui M et al. Autosomal-dominant cerebellar ataxia with retinal degeneration (ADCA type II) is genetically different from ADCA type I. Ann Neurol 1994; 35(4): 439–444.
37. Bauer P, Kraus J, Matoska V, Brouckova M, Zumrova A, Goetz P. Large de novo expansion of CAG repeats in patient with sporadic spinocerebellar ataxia type 7. J Neurol 2004; 251(8): 1023–1024.
38. Guidelines for the molecular genetics predictive test in Huntington‘s disease. International Huntington Association (IHA) and the World Federation of Neurology (WFN) Research Group on Huntington‘s Chorea. Neurology 1994; 44(8): 1533–1536.
Štítky
Paediatric neurology Neurosurgery NeurologyČlánok vyšiel v časopise
Czech and Slovak Neurology and Neurosurgery
2013 Číslo 2
- Memantine Eases Daily Life for Patients and Caregivers
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Metamizole vs. Tramadol in Postoperative Analgesia
Najčítanejšie v tomto čísle
- Creutzfeldt-Jacob disease
- Spinocerebellar Ataxia 7 – a Case Report
- Lyme Borreliosis as a Cause of Bilateral Neuroretinitis with Pronounced Unilateral Stellate Maculopathy in a 8-Year Old Girl
- Electrophysiological Examination of the Pelvic Floor