Nanoparticle-based Drug Delivery Systems Crossing Blood-brain Barrier – Hope for Future Treatment of Neurodegenerative Disorders?
Authors:
M. Filipová 1; R. Rusina 2,3; K. Holada 1
Authors place of work:
Ústav imunologie a mikrobiologie, 1. LF UK v Praze
1; Neurologická klinika a Centrum klinických neurověd, 1. LF UK a VFN v Praze
2; Neurologické oddělení, Thomayerova nemocnice v Praze
3
Published in the journal:
Cesk Slov Neurol N 2016; 79/112(2): 160-167
Category:
Review Article
Práce vznikla za přispění grantu Ministerstva školství mládeže a tělovýchovy ČR (Kontakt II – LH12014) a Ministerstva zdravotnictví ČR (IGA MZ NT 14145-3).
Poděkování patří Dr. Janu Šimákovi a Dr. Silvii Lacerdě (CBER, FDA, White Oak, USA) za pomoc s konfokální mikroskopií a přípravou fluorescenčně značených M60COOH.
Summary
Due to the continually rising prevalence and lack of effective therapy, neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease, are among the most serious problems of modern medicine. Even though promising compounds with potential therapeutic effect have been developed, blood-brain barrier impedes their transport to the central nervous system. Nanotechnologies produce particles with properties that enable them to cross the blood-brain barrier and thus provide hope in solving this problem. Wide utilization of nanoparticles for transportation of drugs is prevented by our limited knowledge of their biological properties and their safety profile. Further developments in this field together with increasing understanding of the pathogenesis of neurodegeneration may lead to development of effective therapy in the future.
Key words:
blood-brain barrier – dendrimers – liposomes – nanotubes – carbon – nanoparticles – neurodegenerative diseases
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Zdroje
1. Volles MJ, Lansbury PT jr. Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson‘s disease. Biochemistry 2003;42(26):7871–8.
2. Williams TL, Serpell LC. Membrane and surface interactions of Alzheimer‘s Abeta peptide – insights into the mechanism of cytotoxicity. FEBS J 2011;278(20):3905–17. doi: 10.1111/j.1742-4658.2011.08228.x.
3. Halliday M, Mallucci GR. Targeting the unfolded protein response in neurodegeneration: a new approach to therapy. Neuropharmacology 2014;76(A):169–74. doi: 10.1016/j.neuropharm.2013.08.034.
4. Bustamante HA, Rivera-Dictter A, Cavieres VA, et al. Turnover of C99 is controlled by a crosstalk between ERAD and ubiquitin-independent lysosomal degradation in human neuroglioma cells. PLoS One 2013;8(12):e83096. doi: 10.1371/journal.pone.0083096.
5. Yuyama K, Yamamoto N, Yanagisawa K. Chloroquine-induced endocytic pathway abnormalities: cellular model of GM1 ganglioside-induced Abeta fibrillogenesis in Alzheimer‘s disease. FEBS Lett 2006;580(30):6972–6.
6. Matej R, Rohan Z, Holada K, et al. The contribution of proteinase-activated receptors to intracellular signaling, transcellular transport and autophagy in Alzheimer‘s disease. Curr Alzheimer Res 2015;12(1):2–12.
7. Mao X, Guo Y, Wang C, et al. Binding modes of thioflavin T molecules to prion peptide assemblies identified by using scanning tunneling microscopy. ACS Chem Neurosci 2011;2(6):281–7. doi: 10.1021/cn200006h.
8. Eisenberg D, Jucker M. The amyloid state of proteins in human diseases. Cell 2012;148(6):1188–203. doi: 10.1016/j.cell.2012.02.022.
9. Khurana V, Elson-Schwab I, Fulga TA, et al. Lysosomal dysfunction promotes cleavage and neurotoxicity of tau in vivo. PLoS Genet 2010;6(7):e1001026. doi: 10.1371/journal.pgen.1001026.
10. Armstrong RA, Cairns NJ, Ironside JW, et al. Does the neuropathology of human patients with variant Creutzfeldt-Jakob disease reflect haematogenous spread of the disease? Neuroscience Letters 2003;348(1):37–40.
11. Korabecny J, Musilek K, Zemek F, et al. Synthesis and in vitro evaluation of 7-methoxy-N-(pent-4-enyl)-1,2,3,4-tetrahydroacridin-9-amine-new tacrine derivate with cholinergic properties. Bioorg Med Chem Lett 2011;21(21):6563–6. doi: 10.1016/j.bmcl.2011.08.042.
12. Telting-Diaz M, Lunte CE. Distribution of tacrine across the blood-brain barrier in awake, freely moving rats using in vivo microdialysis sampling. Pharm Res 1993;10(1):44–8.
13. Du F, Qian ZM, Zhu L, et al. L-DOPA neurotoxicity is mediated by up-regulation of DMT1-IRE expression. PLoS One 2009;4(2):e4593. doi: 10.1371/journal.pone.0004593.
14. Carta M, Carlsson T, Kirik D, et al. Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain 2007;130(7):1819–33.
15. Reichman WE. Current pharmacologic options for patients with Alzheimer‘s disease. Ann Gen Hosp Psychiatry 2003;2(1):1.
16. Sharma S, Lohan S, Murthy RS. Formulation and characterization of intranasal mucoadhesive nanoparticulates and thermo-reversible gel of levodopa for brain delivery. Drug Dev Ind Pharm 2014;40(7):869–78. doi: 10.3109/03639045.2013.789051.
17. Wilson B, Samanta MK, Santhi K, et al. Chitosan nanoparticles as a new delivery system for the anti-Alzheimer drug tacrine. Nanomedicine 2010;6(1):144–52. doi: 10.1016/j.nano.2009.04.001.
18. Bell RD, Winkler EA, Sagare AP, et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 2010;68(3):409–27. doi: 10.1016/j.neuron.2010.09.043.
19. Nuriya M, Shinotsuka T, Yasui M. Diffusion properties of molecules at the blood-brain interface: potential contributions of astrocyte endfeet to diffusion barrier functions. Cereb Cortex 2013;23(9):2118–26. doi: 10.1093/cercor/bhs198.
20. Saint-Pol J, Vandenhaute E, Boucau MC, et al. Brain pericytes ABCA1 expression mediates cholesterol efflux but not cellular amyloid-beta peptide accumulation. J Alzheimers Dis 2012;30(3):489–503. doi: 10.3233/JAD-2012-112090.
21. Banks WA. Brain meets body: the blood-brain barrier as an endocrine interface. Endocrinology 2012;153(9):4111–9. doi: 10.1210/en.2012-1435.
22. Pardridge WM. CNS drug design based on principles of blood-brain barrier transport. J Neurochem 1998;70(5):1781–92.
23. Do TM, Ouellet M, Calon F, et al. Direct evidence of abca1-mediated efflux of cholesterol at the mouse blood-brain barrier. Mol Cell Biochem 2011;357(1–2):397–404. doi: 10.1007/s11010-011-0910-6.
24. Loscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2005;2(1):86–98.
25. Ni Z, Bikadi Z, Rosenberg MF, et al. Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Curr Drug Metab 2010;11(7):603–617.
26. Gao B, Hagenbuch B, Kullak-Ublick GA, et al. Organic anion-transporting polypeptides mediate transport of opioid peptides across blood-brain barrier. J Pharmacol Exp Ther 2000;294(1):73–9.
27. Pizzagalli F, Hagenbuch B, Stieger B, et al. Identification of a novel human organic anion transporting polypeptide as a high affinity thyroxine transporter. Mol Endocrinol 2002;16(10):2283–96.
28. Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015;523(7560):337–41. doi: 10.1038/nature14432.
29. Vittorio O, Raffa V, Cuschieri A. Influence of purity and surface oxidation on cytotoxicity of multiwalled carbon nanotubes with human neuroblastoma cells. Nanomedicine 2009;5(4):424–31. doi: 10.1016/j.nano.2009.02.006.
30. Wang X, Xia T, Duch MC, et al. Pluronic F108 coating decreases the lung fibrosis potential of multiwall carbon nanotubes by reducing lysosomal injury. Nano Lett 2012;12(6):3050–61. doi: 10.1021/nl300895y.
31. Granite M, Radulescu A, Pyckhout-Hintzen W, et al. Interactions between block copolymers and single-walled carbon nanotubes in aqueous solutions: a small-angle neutron scattering study. Langmuir 2011;27(2):751–9. doi: 10.1021/la103096n.
32. Lundqvist M, Stigler J, Elia G, et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A 2008;105(38):14265–70. doi: 10.1073/pnas.0805135105.
33. De Paoli SH, Diduch LL, Tegegn TZ, et al. The effect of protein corona composition on the interaction of carbon nanotubes with human blood platelets. Biomaterials 2014;35(24):6182–94. doi: 10.1016/j.biomaterials.2014.04.067.
34. Darabi Sahneh F, Scoglio C, Riviere J. Dynamics of nanoparticle-protein corona complex formation: analytical results from population balance equations. PLoS One 2013;8(5):e64690. doi: 10.1371/journal.pone.0064690.
35. Salvati A, Pitek AS, Monopoli MP, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 2013;8(2):137–43. doi: 10.1038/nnano.2012.237.
36. Sugiyama I, Sadzuka Y. Change in the character of liposomes as a drug carrier by modifying various polyethyleneglycol-lipids. Biol Pharm Bull 2013;36(6):900–6.
37. Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev 2012;64(7):640–65. doi: 10.1016/j.addr.2011.11.010.
38. Pollock S, Antrobus R, Newton L, et al. Uptake and trafficking of liposomes to the endoplasmic reticulum. Faseb Journal 2010;24(6):1866–78. doi: 10.1096/fj.09-145755.
39. Albertazzi L, Serresi M, Albanese A, et al. Dendrimer internalization and intracellular trafficking in living cells. Mol Pharm 2010;7(3):680–8. doi: 10.1021/mp9002464.
40. Jones AR, Shusta EV. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm Res 2007;24(9):1759–71.
41. Gao JQ, Li Q, Li LM, et al. Glioma targeting and blood-brain barrier penetration by dual-targeting doxorubincin liposomes. Biomaterials 2013;34(22):5628–39.
42. Salvati E, Re F, Sesana S, et al. Liposomes functionalized to overcome the blood-brain barrier and to target amyloid-beta peptide: the chemical design affects the permeability across an in vitro model. Int J Nanomedicine 2013;8:1749–58. doi: 10.2147/IJN.S42783.
43. Kotchey GP, Hasan SA, Kapralov AA, et al. A natural vanishing act: the enzyme-catalyzed degradation of carbon nanomaterials. Acc Chem Res 2012;45(10):1770–81. doi: 10.1021/ar300106h.
44. Yang Z, Zhang Y, Yang Y, et al. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine 2010;6(3):427–41.
45. Orecna M, De Paoli SH, Janouskova O, et al. Toxicity of carboxylated carbon nanotubes in endothelial cells is attenuated by stimulation of the autophagic flux with the release of nanomaterial in autophagic vesicles. Nanomedicine 2014;10(5):939–48. doi: 10.1016/j.nano.2014.02.001.
46. Kagan VE, Konduru NV, Feng W, et al. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol 2010;5(5):354–9. doi: 10.1038/nnano.2010.44.
47. Sugiyama I, Sadzuka Y. Change in the character of liposomes as a drug carrier by modifying various polyethyleneglycol-lipids. Biol Pharm Bull 2013;36(6):900–6.
48. Wilhelm I, Fazakas C, Krizbai IA. In vitro models of the blood-brain barrier. Acta Neurobiol Exp (Wars) 2011;71(1):113–28.
49. Saovapakhiran A, D‘Emanuele A, Attwood D, et al. Surface modification of PAMAM dendrimers modulates the mechanism of cellular internalization. Bioconjug Chem 2009;20(4):693–701. doi: 10.1021/bc8002343.
50. Li R, Wang X, Ji Z, et al. Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity. ACS Nano 2013;7(3):2352–68. doi: 10.1021/nn305567s.
51. Kanthamneni N, Chaudhary A, Wang J, et al. Nanoparticulate delivery of novel drug combination regimens for the chemoprevention of colon cancer. Int J Oncol 2010;37(1):177–85.
52. He B, Jia Z, Du W, et al. The transport pathways of polymer nanoparticles in MDCK epithelial cells. Biomaterials 2013;34(17):4309–26. doi: 10.1016/j.biomaterials.2013.01.100.
53. Huang P, Lian F, Wen Y, et al. Prion protein oligomer and its neurotoxicity. Acta Biochim Biophys Sin (Shanghai) 2013;45(6):442–51. doi: 10.1093/abbs/gmt037.
54. Ramos-Cabrer P, Campos F. Liposomes and nanotechnology in drug development: focus on neurological targets. Int J Nanomedicine 2013;8:951–60. doi: 10.2147/IJN.S30721.
55. Qiu L, Jing N, Jin Y. Preparation and in vitro evaluation of liposomal chloroquine diphosphate loaded by a transmembrane pH-gradient method. Int J Pharm 2008;361(1–2):56–63. doi: 10.1016/j.ijpharm.2008.05.010.
56. Loew M, Forsythe JC, McCarley RL. Lipid nature and their influence on opening of redox-active liposomes. Langmuir 2013;29(22):6615–23. doi: 10.1021/la304340e.
57. Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci U S A 1996;93(24):14164–9.
58. Uner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine 2007;2(3):289–300.
59. Zhou Y, Zhang G, Rao Z, et al. Increased brain uptake of venlafaxine loaded solid lipid nanoparticles by overcoming the efflux function and expression of P-gp. Arch Pharm Res 2015;38(7):1325–35. doi: 10.1007/s12272-014-0539-6.
60. Perez AP, Romero EL, Morilla MJ. Ethylendiamine core PAMAM dendrimers/siRNA complexes as in vitro silencing agents. Int J Pharm 2009;380(1–2):189–200. doi: 10.1016/j.ijpharm.2009.06.035.
61. Crooks RM, Zhao M, Sun L, et al. Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 2001;34(3):181–90.
62. Chaplot SP, Rupenthal ID. Dendrimers for gene delivery – a potential approach for ocular therapy? J Pharm Pharmacol 2014;66(4):542–56. doi: 10.1111/jphp.12104.
63. Cui DM, Xu QW, Gu SX, et al. PAMAM-drug complex for delivering anticancer drug across blood-brain barrier in vitro and in vivo. Afr J Pharm Pharmacol 2009;3(5):227–33.
64. El-Sayed M, Ginski M, Rhodes C, et al. Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. J Control Release 2002;81(3):355–65.
65. Kim JH, Patra CR, Arkalgud JR, et al. Single-molecule detection of H(2)O(2) mediating angiogenic redox signaling on fluorescent single-walled carbon nanotube array. ACS Nano 2011;5(10):7848–57. doi: 10.1021/nn201904t.
66. Ou Z, Wu B. A novel nanoprobe based on single-walled carbon nanotubes/photosensitizer for cancer cell imaging and therapy. J Nanosci Nanotechnol 2013;13(2):1212–6.
67. Shirsat MD, Sarkar T, Kakoullis J jr, et al. Porphyrins-functionalized single-walled carbon nanotubes chemiresistive sensor arrays for VOCs. J Phys Chem C Nanomater Interfaces 2012;116(5):3845–50.
68. Cui T, Zhang L, Wang XZ, et al. Uncovering new signaling proteins and potential drug targets through the interactome analysis of Mycobacterium tuberculosis. Bmc Genomics 2009;10:118. doi: 10.1186/1471-2164-10-118.
69. Ren J, Shen S, Wang D, et al. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Biomaterials 2012;33(11): 3324–33. doi: 10.1016/j.biomaterials.2012.01.025.
70. Nagai H, Okazaki Y, Chew SH et al. Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc Natl Acad Sci U S A 2011;108(49):E1330–8. doi: 10.1073/pnas.1110013108.
71. Semberova J, Lacerda SH, Simakova O, et al. Carbon nanotubes activate blood platelets by inducing extracellular Ca2+ influx sensitive to calcium entry inhibitors. Nano Lett 2009;9(9):3312–7. doi: 10.1021/nl901603k.
72. Lacerda SH, Semberova J, Holada K, et al. Carbon nanotubes activate store-operated calcium entry in human blood platelets. ACS Nano 2011;5(7):5808–13. doi: 10.1021/nn2015369.
73. Zhang C, Wan X, Zheng X, et al. Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer‘s disease mice. Biomaterials 2014;35(1):456–65. doi: 10.1016/j.biomaterials.2013.09.063.
74. Rekas A, Lo V, Gadd GE, et al. PAMAM dendrimers as potential agents against fibrillation of alpha-synuclein, a Parkinson‘s disease-related protein. Macromol Biosci 2009;9(3):230–8. doi: 10.1002/mabi.200800242.
75. Klajnert B, Cangiotti M, Calici S, et al. EPR study of the interactions between dendrimers and peptides involved in Alzheimer‘s and prion diseases. Macromol Biosci 2007;7(8):1065–74.
76. Fu Z, Luo Y, Derreumaux P, et al. Induced beta-barrel formation of the Alzheimer‘s Abeta25-35 oligomers on carbon nanotube surfaces: implication for amyloid fibril inhibition. Biophys J 2009;97(6):1795–803. doi: 10.1016/j.bpj.2009.07.014.
77. Bernardi A, Frozza RL, Meneghetti A, et al. Indomethacin-loaded lipid-core nanocapsules reduce the damage triggered by Abeta1-42 in Alzheimer‘s disease models. Int J Nanomedicine 2012;7:4927–42. doi: 10.2147/IJN.S35333.
78. Nam HY, Nam K, Hahn HJ, et al. Biodegradable PAMAM ester for enhanced transfection efficiency with low cytotoxicity. Biomaterials 2009;30(4):665–73. doi: 10.1016/j.biomaterials.2008.10.013.
79. Kim TI, Baek JU, Zhe Bai C, et al. Arginine-conjugated polypropylenimine dendrimer as a non-toxic and efficient gene delivery carrier. Biomaterials 2007;28(11):2061–7.
80. Park K. Facing the truth about nanotechnology in drug delivery. Acs Nano 2013;7(9):7442–7. doi: 10.1021/nn404501g.
81. De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 2008;3(2):133–49.
82. Araujo F, Shrestha N, Granja PL, et al. Safety and toxicity concerns of orally delivered nanoparticles as drug carriers. Expert Opin Drug MetabToxicol 2015;11(3):381–93. doi: 10.1517/17425255.2015.992781.
Štítky
Paediatric neurology Neurosurgery NeurologyČlánok vyšiel v časopise
Czech and Slovak Neurology and Neurosurgery
2016 Číslo 2
- Memantine Eases Daily Life for Patients and Caregivers
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Metamizole vs. Tramadol in Postoperative Analgesia
Najčítanejšie v tomto čísle
- Ramsay-Hunt Syndrome – a Rare Manifestation of Relatively Frequent Condition
- Transient Ischemic Attack and Minor Stroke Management
- Neurosarcoidosis in a Middle-aged Man – a Case Report
- Autonomic Dysfunction and its Diagnostic Tools in Multiple Sclerosis