Neurorehabilitation of Sensorimotor Function after Spinal Cord Injury
Authors:
J. Kříž 1,2; Z. Hlinková 1
Authors place of work:
Spinální jednotka při Klinice rehabilitace a tělovýchovného lékařství 2. LF UK a FN v Motole, Praha
1; Ortopedicko-traumatologická klinika 3. LF UK a FN Královské Vinohrady, Praha
2
Published in the journal:
Cesk Slov Neurol N 2016; 79/112(4): 378-394
Category:
Minimonography
doi:
https://doi.org/10.14735/amcsnn2016378
Summary
Neurorehabilitation constitutes to be the primary therapeutic approach to patients with spinal cord injury. Intense stimulation of the central nervous system is intended to maximize improvement in neurological function. Besides the neurological development, every attempt is made to achieve the highest possible level of motor function, verticalization and locomotion with the goal to secure maximum self-sufficiency. The most serious motor impairment is the respiratory pattern disorder with limited ventilatory parameters. This is due to impairment of motor functions caused by thoracic but primarily cervical lesions. Strength of the trunk muscles determines the ability of verticalization to the sitting or standing position and is also influenced by the upper and lower limb function. Activity of the upper extremities predominantly determines the level of self-sufficiency but also the level of mobility. Ability to recruit lower extremity function is crucial for locomotion though residual mobility may be useful e.g. during transfers. Rehabilitation is therefore focused on training the trunk as well as the limb muscles. The desired outcome is the return of muscle strength and inclusion of paretic muscles into functional movement patterns as well as respiratory pattern. To meet these goals, several different physiotherapeutic methods may be utilized. These may be combined as needed and according to a therapist’s creativity. The treatment is based on neurophysiological principles including those based on motor ontogenesis. The objective is to utilize predetermined motor targets and recruit the damaged segments into their physiologic function. To that end, it is possible to utilize methods that employ voluntary muscle control (e.g. Dynamic Neuromuscular Stabilization) as well as methods based on involuntary movement control (e.g. Vojta’s reflex locomotion). A specific therapeutic approach utilizes robotic systems that complete more conventional methods of physiotherapy and afford a greater variety of treatment. This also provides a significant motivating element.
Key words:
spinal cord injury – rehabilitation – physiotherapeutic methods – robotic training
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Zdroje
1. Lynskey JV, Belanger A, Jung R. Activity-dependent plasticity in spinal cord injury. J Rehabil Res Dev 2008;45(2):229– 40.
2. Fouad K, Tetzlaff W. Rehabilitative training and plasticity following spinal cord injury. Exp Neurol 2012;235(1):91– 9. doi: 10.1016/ j.expneurol.2011.02.009.
3. Kirshblum SC, Waring W, Biering-Sorensen F, et al. Reference for the 2011 revision of the International Standards for Neurological Classification of Spinal Cord Injury. J Spinal Cord Med 2011;34(6):547– 54. doi: 10.1179/ 107902611X13186000420242.
4. Kříž J, Háková R, Hyšperská V, et al. Mezinárodní standardy pro neurologickou klasifikaci míšního poranění – revize 2013. Cesk Slov Neurol N 2014;77/ 110(1):77– 81.
5. Ditunno JF, Little JW, Tessler A, et al. Spinal shock revisited: a four-phase model. Spinal Cord 2004;42(7):383– 95.
6. Háková R, Kříž J. Míšní šok – od patofyziologie ke klinickým projevům. Cesk Slov Neurol N 2015;78/ 111(3):263– 7.
7. Steeves JD, Kramer JK, Fawcett JW, et al. Extent of spontaneous motor recovery after traumatic cervical sensorimotor complete spinal cord injury. Spinal Cord 2011;49(2):257– 65. doi: 10.1038/ sc.2010.99.
8. van Hedel HJ, Curt A. Fighting for each segment: estimating the clinical value of cervical and thoracic segments in SCI. J Neurotrauma 2006;23(11):1621– 31.
9. Curt A, Van Hedel HJ, Klaus D, et al. Recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair. J Neurotrauma 2008;25(6):677– 85. doi: 10.1089/ neu.2007.0468.
10. Zimmer MB, Nantwi K, Goshgarian HG. Effect of spinal cord injury on the respiratory system: basic research and current clinical treatment options. J Spinal Cord Med 2007;30(4):319– 30.
11. Alvarez SE, Peterson M, Lunsford BR. Respiratory treatment of the adult patient with spinal cord injury. Phys Ther 1981;61(12):1737– 45.
12. Reid WD, Brown JA, Konnyu KJ, et al. Physiotherapy secretion removal techniques in people with spinal cord injury: a systematic review. J Spinal Cord Med 2010;33(4):353– 70.
13. Gabison S, Verrier MC, Nadeau S, et al. Trunk strength and function using the multidirectional reach distance in individuals with non-traumatic spinal cord injury. J Spinal Cord Med 2014;37(5):537– 47. doi: 10.1179/ 2045772314Y.0000000246.
14. Sprigle S, Maurer C, Holowka M. Development of valid and reliable measures of postural stability. J Spinal Cord Med 2007;30(1):40– 9.
15. Kolář P. Dynamická neuromuskulární stabilizace In: Kolář P et al, eds. Rehabilitace v klinické praxi. Praha: Galén 2009:233– 46.
16. Vojta V, Peters A. Vojtův princip. Praha: Grada publishing 1995.
17. Sinnott KA, Milburn P, McNaughton H. Factors associated with thoracic spinal cord injury, lesion level and rotator cuff disorders. Spinal Cord 2000;38(12):748– 53.
18. Pentland WE, Twomey LT. Upper limb function in persons with long term paraplegia and implications for independence: part II. Paraplegia 1994;32(4):219– 24.
19. Doll U, Maurer-Burkhard B, Spahn B, et al. Functional hand development in tetraplegia. Spinal Cord 1998;36(12):818– 21.
20. Kim CM, Eng JJ, Whittaker MW. Level walking and ambulatory capacity in persons with incomplete spinal cord injury: relationship with muscle strength. Spinal Cord 2004;42(3):156– 62.
21. Ionta S, Villiger M, Jutzeler CR, et al. Spinal cord injury affects the interplay between visual and sensorimotor representations of the body. Sci Rep 2016;6:20144. doi: 10.1038/ srep20144.
22. Triolo RJ, Bailey SN, Miller ME, et al. Effects of stimulating hip and trunk muscles on seated stability, posture, and reach after spinal cord injury. Arch Phys Med Rehabil 2013;94(9):1766– 75. doi: 10.1016/ j.apmr.2013.02.023.
23. Krassioukov A. Autonomic function following cervical spinal cord injury. Respir Physiol Neurobiol 2009;169(2):157– 64. doi: 10.1016/ j.resp.2009.08.003.
24. Nyland J, Quigley P, Huang C, et al. Preserving transfer independence among individuals with spinal cord injury. Spinal Cord 2000;38(11):649– 57.
25. Kobesova A, Kolar P. Developmental kinesiology: three levels of motor control in the assessment and treatment of the motor system. J Bodyw Mov Ther 2014;18(1):23– 33. doi: 10.1016/ j.jbmt.2013.04.002.
26. Frank C, Kobesova A, Kolar P. Dynamic neuromuscular stabilization & sports rehabilitation. Int J Sports Phys Ther 2013;8(1):62– 73.
27. Bobath B. Adult hemiplegia. Evaluation and treatment. London: Heinemann 1990.
28. Hindle KB, Whitcomb TJ, Briggs WO, et al. Proprioceptive Neuromuscular Facilitation (PNF): Its Mechanisms and Effects on Range of Motion and Muscular Function. J Hum Kinet 2012;31:105– 13. doi: 10.2478/ v10078-012-0011-y.
29. Adler SS, Beckers D, Buck M. PNF in Practice. Berlin: Springer-Verlag 1993.
30. Janda V, Vávrová M. Senzomotorická stimulace. Rehabilitácia 1992;25:14– 34.
31. Rywerant Y. The Feldenkrais Method: Teaching by Handling. San Francisco: Harper & Row 1983.
32. Lee JS, Yang SH, Koog YH, et al. Effectiveness of sling exercise for chronic low back pain: a systematic review. J Phys Ther Sci 2014;26(8):1301– 6. doi: 10.1589/ jpts.26.1301.
33. Maeo S, Chou T, Yamamoto M, et al. Muscular activities during sling- and ground-based push-up exercise. BMC Res Notes 2014;7:192. doi: 10.1186/ 1756-0500-7-192.
34. Tamburella F, Scivoletto G, Molinari M. Somatosensory inputs by application of KinesioTaping: effects on spasticity, balance, and gait in chronic spinal cord injury. Front Hum Neurosci 2014;30(8):367.
35. Vařeka I, Bednář M, Vařeková R. Robotická rehabilitace chůze. Cesk Slov Neurol N 2016;79/ 112(2):168– 72.
36. Riener R, Lünenburger L, Colombo G. Human-centered robotics applied to gait training and assessment. J Rehabil Res Dev 2006;43(5):679– 94.
37. Esclarin A, Bravo P, Arroyo O, et al. Tracheostomy ventilation versus diaphragmatic pacemaker ventilation in high spinal cord injury. Paraplegia 1994;32(10):687– 93.
38. Brindley GS, Polkey CE, Rushton DN, et al. Sacral anterior root stimulator for bladder kontrol in paraplegia: the first 50 cases. J Neurol Neurosurg Psychiatry 1986;49(10):1004– 14.
39. Wieler M, Stein RB, Ladouceur M, et al. Multicenter evaluation of electrical stimulation systems for walking. Arch Phys Med Rehabil 1999;80(5):495– 500.
40. Everaert DG, Thompson AK, Chong SL, et al. Does functional electrical stimulation for foot drop strengthen corticospinal connections? Neurorehabil Neural Repair 2010;24(2):168– 77. doi: 10.1177/ 1545968309349939.
41. Yoshida T, Masani K, Sayenko D, et al. Cardiovascular Response of Individuals with Spinal Cord Injury to Dynamic Functional Electrical Stimulation Under Orthostatic Stress. IEEE Trans Neural Syst Rehabil Eng 2013;21(1):37– 45. doi: 10.1109/ TNSRE.2012.2211894.
42. Seitz RJ, Kammerzell A, Samartzi M, et al. Monitoring of visumotor coordination in healthy subjects and patients with stroke and parkinson’s disease: an application study using the PABLO-device. Int J Neurorehabilitation 2014;1:113.
Štítky
Paediatric neurology Neurosurgery NeurologyČlánok vyšiel v časopise
Czech and Slovak Neurology and Neurosurgery
2016 Číslo 4
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Memantine Eases Daily Life for Patients and Caregivers
- Spasmolytic Effect of Metamizole
Najčítanejšie v tomto čísle
- Neurorehabilitation of Sensorimotor Function after Spinal Cord Injury
- Three Times of the Clock Drawing Test Rated with BaJa Scoring in Patients with Early Alzheimer‘s Disease
- Genetic and Epigenetic Factors Affecting Development and Prognosis of Brain Gliomas – a Review of Current Knowledge
- Retinal Nerve Fiber Layer Measurement in Patients with Alzheimer’s Disease