Classification of Central Nervous System Tumors – WHO 2016 Update
Authors:
J. Polívka 1; T. Řepík 1; L. Holubec 2; J. Polívka jr. 1 3
Authors‘ workplace:
Neurologická klinika LF UK a FN Plzeň
1; Biomedicínské centrum, LF UK v Plzni
2; Ústav histologie a embryologie
LF UK v Plzni
3
Published in:
Cesk Slov Neurol N 2017; 80/113(3): 353-356
Category:
doi:
https://doi.org/10.14735/amcsnn2017353
Podporováno projektem Ministerstva zdravotnictví České republiky pro konceptuální rozvoj výzkumné organizace 00669806 – Fakultní nemocnice Plzeň.
Podporováno z Národního program udržitelnosti I (NPU I) č. LO1503 poskytovaného Ministerstvem školství, mládeže a tělovýchovy ČR.
Podporováno grantem SVV 2016 č. 260 283.
Podporováno Programem rozvoje vědních oborů Univerzity Karlovy (Progres Q39).
Overview
Recently updated classification of the central nervous system (CNS) tumours prepared by the World Health Organization (WHO) in 2016 uses, in addition to the histopathological criteria, also molecular genetic characteristics (biomarkers) of tumour cells and introduces the so-called integrated diagnostics concept for the first time. Molecular genetic biomarkers often have a major impact on the patients´ prognosis and/or selection of an appropriate therapy in a variety of tumour entities. This update represents a significant progress compared to the 2007 classification of CNS tumours. The more precise classification of tumours using well-known and widely accepted molecular genetic biomarkers, will also facilitate further research in anticancer therapeutics and consistent inclusion of patients into clinical trials. The presence of a tumour group called „not otherwise specified“ (NOS) is the major drawback of this novel approach. Tumours currently classified as the NOS entities are likely to be more accurately characterized with an ongoing neurooncological research in molecular genetics. The operational and technical barriers of molecular genetic analyses will be also overcome and this will further enable significant reduction of the NOS tumour entities. It is assumed that the new classification will facilitate clinical, experimental as well as epidemiological studies and thereby will improve the life of patients with brain tumours. This review presents the key findings from the new classification of the CNS tumours together with their clinical sequelae.
Key words:
CNS tumors – classification 2016 – WHO – IDH mutation – 1p/19q co-deletion – integrated diagnostics – molecular genetics – personalized medicine
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Sources
1. Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007;114(2):97– 109.
2. Louis DN. The next step in brain tumor classification: “Let us now praise famous men”… or molecules? Acta Neuropathol 2012;124(6):761– 2. doi: 10.1007/ s00401-012-1067-4.
3. Weller M, Pfister SM, Wick W, et al. Molecular neuro-oncology in clinical practice: a new horizon. Lancet Oncol 2013;14(9):e370– 9. doi: 10.1016/ S1470-2045(13)70168-2.
4. Wirsching HG, Weller M. The Role of Molecular Diag-nostics in the Management of Patients with Gliomas. Curr Treat Options Oncol 2016;17(10):51. doi: 10.1007/ s11864-016-0430-4.
5. Reifenberger J, Reifenberger G, Liu L, et al. Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am J Pathol 1994;145(5):1175– 90.
6. Cairncross G, Wang M, Shaw E, et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 2013;31(3):337– 43. doi: 10.1200/ JCO.2012.43.2674.
7. van den Bent MJ, Brandes AA, Taphoorn MJ, et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 2013;31(3):344– 50. doi: 10.1200/ JCO.2012.43.2229.
8. Polivka J jr, Polivka J, Repik T, et al. Co-deletion of 1p/ 19q as Prognostic and Predictive Biomarker for Patients in West Bohemia with Anaplastic Oligodendroglioma. Anticancer Res 2016;36(1):471– 6.
9. Polivka J jr, Polivka J, Rohan V, et al. New treatment paradigm for patients with anaplastic oligodendroglial tumors. Anticancer Res 2014;34(4):1587– 94.
10. Sanson M, Marie Y, Paris S, et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol 2009;27(25):4150– 4. doi: 10.1200/ JCO.2009.21.9832.
11. Weller M, Felsberg J, Hartmann C, et al. Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J Clin Oncol 2009;27(34):5743– 50. doi: 10.1200/ JCO.2009.23.0805.
12. Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008;321(5897):1807– 12. doi: 10.1126/ science.1164382.
13. Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009;360(8):765– 73. doi: 10.1056/ NEJMoa0808710.
14. Hartmann C, Hentschel B, Wick W, et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 2010;120(6):707– 18. doi: 10.1007/ s00401-010-0781-z.
15. Weiler M, Wick W. Molecular predictors of outcome in low-grade glioma. Curr Opin Neurol 2012;25:767– 73. doi: 10.1097/ WCO.0b013e32835a0217.
16. Polivka J, Polivka J jr, Rohan V, et al. Isocitrate dehydrogenase-1 mutations as prognostic biomarker in glioblastoma multiforme patients in west bohemia. BioMed Res Int 2014;2014:735659. doi: 10.1155/ 2014/ 735659.
17. Zou P, Xu H, Chen P, et al. IDH1/ IDH2 mutations define the prognosis and molecular profiles of patients with gliomas: a meta-analysis. PloS One 2013;8(7):e68782. doi: 10.1371/ journal.pone.0068782.
18. Polivka J, Polivka J jr, Krakorova K, et al. Current status of biomarker research in neurology. EPMA J 2016;7:14. doi: 10.1186/ s13167-016-0063-5.
19. Polivka J, Pesta M, Janku F. Testing for oncogenic molecular aberrations in cell-free DNA-based liquid biopsies in the clinic: are we there yet? Expert Rev Mol Diagn 2015;15(12):1631– 44. doi: 10.1586/ 14737159.2015.1110021.
20. Louis DN, Perry A, Burger P, et al. International Society Of Neuropathology – Haarlem consensus guidelines for nervous system tumor classification and grading. Brain Pathol Zurich Switz 2014;24(5):429– 35. doi: 10.1111/ bpa.12171.
21. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016;131(6):803– 20. doi: 10.1007/ s00401-016-1545-1.
22. Polivka J, Polivka J jr, Rohan V, et al. Glioblastoma Multiforme – a Review of Pathogenesis, Biomarkers and Therapeutic Perspectives. Cesk Slov Neurol N 2013;76/ 109(5):575– 83.
23. Polivka J jr, Polivka J, Rohan V, et al. Current View on Management of Central Nervous System Low-grade Gliomas. Cesk Slov Neurol N 2016;79/ 112(5):534– 40.
24. Ellison DW, Kocak M, Figarella-Branger D, et al. Histopathological grading of pediatric ependymoma: reproducibility and clinical relevance in European trial cohorts. J Negat Results Biomed 2011;10:7. doi: 10.1186/ 1477-5751-10-7.
25. Parker M, Mohankumar KM, Punchihewa C, et al. C11orf95-RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature 2014;506(7489):451– 5. doi: 10.1038/ nature13109.
26. Pietsch T, Wohlers I, Goschzik T, et al. Supratentorial ependymomas of childhood carry C11orf95-RELA fusions leading to pathological activation of the NF-κB signaling pathway. Acta Neuropathol 2014;127:609– 11. doi: 10.1007/ s00401-014-1264-4.
27. Coluccia D, Figuereido C, Isik S, et al. Medulloblastoma: Tumor Biology and Relevance to Treatment and Prognosis Paradigm. Curr Neurol Neurosci Rep 2016;16(5):43. doi: 10.1007/ s11910-016-0644-7.
28. Khatua S. Evolving molecular era of childhood medulloblastoma: time to revisit therapy. Future Oncol 2016;12(1):107– 17. doi: 10.2217/ fon.15.284.
29. Kool M, Korshunov A, Remke M, et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 2012;123(4):473– 84. doi: 10.1007/ s00401-012-0958-8.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2017 Issue 3
- Memantine Eases Daily Life for Patients and Caregivers
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Advances in the Treatment of Myasthenia Gravis on the Horizon
Most read in this issue
- Myotonic Dystrophy – Unity in Diversity
- Fetal Radiation Risk Due to X-ray Procedures Performed on Pregnant Women
- Febrile Seizures – Sometimes Less is More
- Low Back Pain – Evidence-based Medicine and Current Clinical Practice. Is there Any Reason to Change Anything?