Ataxia
Authors:
J. Paulasová Schwabová 1,2; M. Daňková 1
Authors place of work:
Centrum hereditárních ataxií, Neurologická klinika 2. LF UK a FN Motol, Praha
1; Laboratoř sportovní motoriky, Fakulta tělesné výchovy a sportu UK v Praze
2
Published in the journal:
Cesk Slov Neurol N 2018; 81(2): 131-149
Category:
Minimonography
doi:
https://doi.org/10.14735/amcsnn2018131
Summary
Term “ataxia” means impaired, irregular movement, but is also known as a group of hereditary diseases. Thanks to progress in molecular genetics, new types of ataxia are found daily, together with specification of phenotype-genotype correlation. With progress in neuroimaging and electrophysiology, ataxia as a symptom might not get the appropriate attention of clinicians. However, clinical features of ataxia can serve as an important clue in differential diagnosis. This text describes ataxia as a syndrome. We discussed specific signs of ataxia from a syndromological point of view and highlighted the most common causes of ataxia and some of the rare causes imitating ataxia as well.
Key words:
ataxia – cerebelar ataxia – sensory ataxia – vestibular ataxia – etiology of ataxia
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Zdroje
1. Bouillaud (1846). Referred to by Garcin R. In: Vinken PJ, Bruyn GW (eds). Handbook of neurology. Amsterdam: North Holland Pub Co 1975: 309– 355.
2. Friedreich N. Ueber degenerative Atrophie der spinalen Hinterstränge. Arch Pathol Anat Physiol Klin Med 1863; 26(5– 6): 433– 459.
3. Marie P. Sur l’hérédo-ataxie cérébelleuse. Semaine medicale 1893; 13: 444– 447.
4. Klockgether T. Handbook of ataxia disorders (Neurological disease and therapy). New York: Marcel Dekker 2000.
5. Sudarsky L. Cerebellar gait and sensory ataxia. In: Bronstein AM, Brandt T, Woollacott MH et al (eds). Clinical disorders of balance, posture and gait. 2nd ed. New York: Oxford University Press 2004: 163– 172.
6. Babinski J. De l’asynergie cérébelleuse. Rev Neurol (Paris) 1899; 7: 806– 816.
7. Ropper AH, Brown RH. Incoordination and other disorders of cerebellar fiction. Adams and Victor‘s principles of neurology. 8th ed. New York: McGraw-Hill 2005: 78– 88.
8. Holmes G, Stewart TG. Symptomatology of cerebellar tumors: a study of forty cases. Brain 1904; 27: 522– 591.
9. Thomas JA, Herring WC. Cerebellar functions (1912). Whitefish: Kessinger Publishing 2010.
10. Henner K. Všeobecná diagnostika chorob mozečkových. Praha: Bursík & Kohout 1936.
11. Růžička E, Ambler Z. Mozeček. In: Ambler Z, Bednařík J, Růžička E (eds). Klinická neurologie: část obecná. Praha: Triton 2008: 143– 161.
12. Lesný I. Mozečková onemocnění dětského věku. Praha: Avicenum 1976.
13. Willis T. Cerebri Anatome: cui accessit nervorum descriptio et usus. London: Londini 1664.
14. Caligiore D, Pezzulo G, Baldassarre G et al. Consensus Paper: Towards a systems-level view of cerebellar function: the interplay between cerebellum, basal ganglia, and cortex. Cerebellum 2017; 16(1): 203– 229. doi: 10.1007/ s12311-016-0763-3.
15. MacLeod CE, Zilles K, Schleicher A et al. Expansion of the neocerebellum in Hominoidea. J Hum Evol 2003; 44(4): 401– 429.
16. Leonard CT. The neuroscience of human movement. St. Louis: Mosby 1998.
17. Hashimoto M, Hibi M. Development and evolution of cerebellar neural circuits. Dev Growth Differ 2012; 54(3): 373– 389. doi: 10.1111/ j.1440-169X.2012.01348.x.
18. Houk J, Buckingham J, Barto A. Models of the cerebellum and motor learning. Behav Brain Sci 1996; 19(3): 368– 383.
19. Bodranghien F, Bastian A, Casali C et al. Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum 2016; 15(3): 369– 391. doi: 10.1007/ s12311-015-0687-3.
20. Mariën P, Manto M. Cerebellum as a master-piece for linguistic predictability. Cerebellum. 2017. In press. doi: 10.1007/ s12311-017-0894-1.
21. Sokolov AA, Miall RC, Ivry RB. The cerebellum: adaptive prediction for movement and cognition. Trends Cogn Sci 2017; 21(5): 313– 332. doi: 10.1016/ j.tics.2017.02.005.
22. Doya K. What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Netw 1999; 12(7– 8): 961– 974.
23. Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 2008; 9(4): 304– 313. doi: 10.1038/ nrn2332.
24. Ishikawa T, Tomatsu S, Izawa J et al. The cerebro-cerebellum: could it be loci of forward models? Neuroscience Research 2016; 104: 72– 79. doi: 10.1016/ j.neures.2015.12.003.
25. Doya K. Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr Opin Neurobiol 2000; 10(6): 732– 739.
26. Lesage E, Morgan BE, Olson AC et al. Cerebellar rTMS disrupts predictive language processing. Curr Biol 2012; 22(18): R794– R795. doi: 10.1016/ j.cub.2012.07.006.
27. Hikosaka O, Isoda M. Switching from automatic to controlled behavior: cortico-basal ganglia mechanisms. Trends Cogn Sci 2010; 14(4): 154– 161. doi: 10.1016/ j.tics.2010.01.006.
28. Diener HC, Dichgans J. Pathophysiology of cerebellar ataxia. Mov Disord 1992; 7(2): 95– 109.
29. Bareš M, Lungu OV, Husárová I et al. Predictive motor timing performance dissociates between early diseases of the cerebellum and parkinson’s disease. Cerebellum 2010; 9(1): 124– 135. doi: 10.1007/ s12311-009-0133-5.
30. Bareš M, Lungu OV, Liu T et al. The neural substrate of predictive motor timing in spinocerebellar ataxia. Cerebellum 2011; 10(2): 233– 244. doi: 10.1007/ s12311-010-0237-y.
31. Husárová I, Lungu OV, Mareček R et al. Functional imaging of the cerebellum and basal ganglia during predictive motor timing in early Parkinson’s disease. J Neuroimaging 2014; 24(1): 45– 53. doi: 10.1111/ j.1552-6569.2011.00663.x.
32. Lungu OV, Bares M, Liu T et al. Trial-to-trial adaptation: parsing out the roles of cerebellum and bg in predictive motor timing. J Cogn Neurosci 2016; 28(7): 920– 934. doi: 10.1162/ jocn_a_00943.
33. Filip P, Lošák J, Kašpárek T et al. Neural network of predictive motor timing in the context of gender differences. Neural Plast 2016; 2016: 2073454. doi: 10.1155/ 2016/ 2073454.
34. Hallett M, Shahani BT, Young RR. EMG analysis of stereotyped voluntary movements in man. J Neurol Neurosurg Psychiatry 1975; 38(12): 1154– 1162.
35. Hallett M, Massaquoi SG. Physiologic studies of dysmetria in patients with cerebellar deficits. Can J Neurol Sci 1993; 20 (Suppl 3): S83– S92.
36. Galea JM, Vazquez A, Pasricha N et al. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex 2011; 21(8): 1761– 1770. doi: 10.1093/ cercor/ bhq246.
37. Gilman S, Bloedel JR, Lenchtenberg R. Disorders of the cerebellum. Contempora: F. A. Davis Co 1981.
38. Jayaram G, Galea JM, Bastian AJ et al. Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cereb Cortex 2011; 21(8): 1901– 1909. doi: 10.1093/ cercor/ bhq263.
39. Haith AM, Krakauer JW. Model-based and model-free mechanisms of human motor learning. Adv Exp Med Biol 2013; 782: 1– 21. doi: 10.1007/ 978-1-4614-5465-6_1.
40. Houk J, Mugnaini E. Cerebellum. In: Squire L, Bloom F, Roberts J et al (eds). Fundamental neuroscience. San Diego: Academic 2003: 841– 872.
41. Fahn S. Principles and practice of movement disorders. 2nd ed. Edinburgh: Elsevier 2011: 51– 59.
42. Geborek P, Nilsson E, Bolzoni F et al. A survey of spinal collateral actions of feline ventral spinocerebellar tract neurons. Eur J Neurosci 2013; 37(3): 380– 392. doi: 10.1111/ ejn.12060.
43. Holmes G. The symptoms of acute cerebellar injuries due to gunshot injuries. Brain 1917; 40(4): 461– 535.
44. Dow RS, Moruzzi G. The physiology and pathology of the cerebellum. Am J Med Sci 1959; 240(2): 540.
45. Maschke M, Gomez CM, Tuite PJ et al. Dysfunction of the basal ganglia, but not the cerebellum, impairs kinaesthesia. Brain 2003; 126(10): 2312– 2322.
46. Angel RW. Barognosis in a patient with hemiaraxia. Ann Neurol 1980; 7(1): 73– 77.
47. Bhanpuri NH, Okamura AM, Bastian AJ. Predictive modeling by the cerebellum improves proprioception. J Neurosci 2013; 33(36): 14301– 14306. doi: 10.1523/ JNEUROSCI.0784-13.2013.
48. Grill SE, Hallett M, Marcus C et al. Disturbances of kinaesthesia in patients with cerebellar disorders. Brain 1994; 117(6): 1433– 1447.
49. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain 1998; 121(4): 561– 579.
50. Schmahmann JD, Pandya DN. The cerebrocerebellar system. In: Schmahmann JD (ed). The cerebellum and cognition. San Diego: Academic Press 1997: 31– 60.
51. Baillieux H, De Smet HJ, Dobbeleir A et al. Cognitive and affective disturbances following focal cerebellar damage in adults: a neuropsychological and SPECT study. Cortex 2010; 46(7): 869– 879. doi: 10.1016/ j.cortex.2009.09.002.
52. Stoodley CJ, Schmahmann JD. The cerebellum and language: evidence from patients with cerebellar degeneration. Brain Lang 2009; 110(3): 149– 153. doi: 10.1016/ j.bandl.2009.07.006.
53. Guell X, Hoche F, Schmahmann JD. Metalinguistic deficits in patients with cerebellar dysfunction: empirical support for the dysmetria of thought theory. Cerebellum 2015; 14(1): 50– 58. doi: 10.1007/ s12311-014-0630-z.
54. Manto M, Mariën P. Schmahmann’s syndrome – identification of the third cornerstone of clinical ataxiology. Cerebellum Ataxias 2015; 2(1): 2. doi: 10.1186/ s40673-015-0023-1.
55. Hoche F, Guell X, Sherman JC et al. Cerebellar contribution to social cognition. Cerebellum 2016; 15(6): 732– 743.
56. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 2004; 16(3): 367– 378.
57. Guell X, Gabrieli JDE, Schmahmann JD. Embodied cognition and the cerebellum: perspectives from the dysmetria of thought and the universal cerebellar transform theories. Cortex 2018; 100: 140– 148. doi: 10.1016/ j.cortex.2017.07.005.
58. Koziol LF, Budding D, Andreasen N et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum 2014; 13(1): 151– 77. doi: 10.1007/ s12311-013-0511-x.
59. Ito M. Synaptic plasticity in the cerebellar cortex and its role in motor learning. Can J Neurol Sci 1993; 20 (Suppl 3): S70– S74.
60. Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 2001; 81(3): 1143– 1195.
61. Bolceková E, Mojzeš M, Van Tran Q et al. Cognitive impairment in cerebellar lesions: a logit model based on neuropsychological testing. Cerebellum Ataxias 2017; 4(1): 13. doi: 10.1186/ s40673-017-0071-9.
62. Tedesco AM, Chiricozzi FR, Clausi S et al. The cerebellar cognitive profile. Brain 2011; 134(12): 3672– 3686. doi: 10.1093/ brain/ awr266.
63. Schmahmann JD, Pandya DN. The cerebrocerebellar system. Int Rev Neurobiol 1997; 41: 31– 60.
64. Schmahmann JD. From movement to thought: Anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp 1996; 4(3): 174– 198. doi: 10.1002/ (SICI)1097-0193(1996)4:3<174::AID-HBM3>3.0.CO;2-0.
65. Goetz M, Schwabova JP, Hlavka Z et al. Dynamic balance in children with attention-deficit hyperactivity disorder and its relationship with cognitive functions and cerebellum. Neuropsychiatr Dis Treat 2017; 13: 873– 880. doi: 10.2147/ NDT.S125169.
66. Phillips JR, Hewedi DH, Eissa AM et al. The cerebellum and psychiatric disorders. Front Public Health 2015; 3: 66. doi: 10.3389/ fpubh.2015.00066.
67. Caligiore D, Pezzulo G, Miall RC et al. The contribution of brain sub-cortical loops in the expression and acquisition of action understanding abilities. Neurosci Biobehav Rev 2013; 37 (10 Pt 2): 2504– 2515. doi: 10.1016/ j.neubiorev.2013.07.016.
68. Koziol LF, Budding DE, Chidekel D. From movement to thought: executive function, embodied cognition, and the cerebellum. Cerebellum 2012; 11(2): 505– 525. doi: 10.1007/ s12311-011-0321-y.
69. Popa T, Velayudhan B, Hubsch C et al. Cerebellar processing of sensory inputs primes motor cortex plasticity. Cereb Cortex 2013; 23(2): 305– 314. doi: 10.1093/ cercor/ bhs016.
70. Hamada M, Galea JM, Di Lazzaro V et al. Two distinct interneuron circuits in human motor cortex are linked to different subsets of physiological and behavioral plasticity. J Neurosci 2014; 34(38): 12837– 12849. doi: 10.1523/ JNEUROSCI.1960-14.2014.
71. Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci 2010; 107(18): 8452– 8456. doi: 10.1073/ pnas.1000496 107.
72. Filip P, Gallea C, Lehéricy S et al. Disruption in cerebellar and basal ganglia networks during a visuospatial task in cervical dystonia. Mov Disord 2017; 32(5): 757– 768. doi: 10.1002/ mds.26930.
73. Burciu RG, Hess CW, Coombes SA et al. Functional activity of the sensorimotor cortex and cerebellum relates to cervical dystonia symptoms. Hum Brain Mapp 2017; 38(9): 4563– 4573. doi: 10.1002/ hbm.23684.
74. Wu T, Hallett M. The cerebellum in Parkinson’s disease. Brain 2013; 136(Pt 3): 696– 709. doi: 10.1093/ brain/ aws 360.
75. Fukutani Y, Cairns NJ, Rossor MN et al. Purkinje cell loss and astrocytosis in the cerebellum in familial and sporadic Alzheimers disease. Neurosci Lett 1996; 214(1): 33– 36.
76. Ambler Z. Neurologie pro studenty lékařské fakulty. 5. vyd. Praha: Karolinum 2004.
77. Vítek J. Obecná neurologická diagnostika. 3. vyd. Praha: Státní zdravotnické nakladatelství 1955.
78. Trouillas P, Takayanagi T, Hallett M et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. J Neurol Sci 1997; 145(2): 205– 211.
79. Schmitz-Hübsch T, du Montcel ST, Baliko L et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 2006; 66(11): 1717– 1720.
80. Schmahmann JD, Gardner R, MacMore J et al. Development of a brief ataxia rating scale (BARS) based on a modified form of the ICARS. Mov Disord 2009; 24(12): 1820– 1828. doi: 10.1002/ mds.22681.
81. Bürk K. Clinical scales of cerebellar ataxias. In: Manto M, Schmahmann J, Rossi F et al (eds). Handbook of the cerebellum and cerebellar disorders. Dordrecht: Springer 2013: 1785– 1798.
82. Bhanpuri NH, Okamura AM, Bastian AJ. Predicting and correcting ataxia using a model of cerebellar function. Brain 2014; 137(7): 1931– 1944. doi: 10.1093/ brain/ awu115.
83. Marek M, Paus S, Allert N et al. Ataxia and tremor due to lesions involving cerebellar projection pathways: a DTI tractographic study in six patients. J Neurol 2015; 262(1): 54– 58. doi: 10.1007/ s00415-014-7503-8.
84. Grimaldi G. Cerebellar motor disorders. In: Manto M, Schmahmann J, Rossi F et al (eds). Handbook of the cerebellum and cerebellar disorders. Dordrecht: Springer 2013.
85. Brunamonti E, Chiricozzi FR, Clausi S et al. Cerebellar damage impairs executive control and monitoring of movement generation. PLoS One 2014; 9(1): e85997. doi: 10.1371/ journal.pone.0085997.
86. Bastian AJ, Martin TA, Keating JG et al. Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol 1996; 76(1): 492– 509.
87. Babinski J. Sur le role du cervelet dans les actes volitionnels nécessitant une succession rapide de mouvements (1) (diadococinésie). Rev Neurol (Paris) 1902; 10: 1013– 1015.
88. Campbell. DeJong’s The neurologic examination. 6th ed. Philadelphia: Lippincott Williams & Wilkins 2005.
89. Spidalieri G, Busby L, Lamarre Y. Fast ballistic arm movements triggered by visual, auditory, and somesthetic stimuli in the monkey. II. Effects of unilateral dentate lesion on discharge of precentral cortical neurons and reaction time. J Neurophysiol 1983; 50(6): 1359– 1379.
90. Ziegler W, Wessel K. Speech timing in ataxic disorders: sentence production and rapid repetitive articulation. Neurology 1996; 47(1): 208– 214.
91. Holmes G. The cerebellum of man. Brain 1939; 62(1): 1– 30.
92. Samii A, Wassermann EM, Hallett M. Decreased postexercise facilitation of motor evoked potentials in patients with cerebellar degeneration. Neurology 1997; 49(2): 538– 542.
93. Koeppen AH. The pathogenesis of spinocerebellar ataxia. Cerebellum 2005; 4(1): 62– 73.
94. Manto MU. Cerebellar disorders: a practical approach to diagnosis and management. Cambridge: Cambridge University Press 2010.
95. Růžička E, Marusič P. Základní neurologické vyšetření – nastal čas pro změny? Cesk Slov Neurol N 2017; 80/ 113(1): 84– 91. doi: 10.14735/ amcsnn201784.
96. Holmes G. The Croonian lectures on the clinical symptoms of cerebellar disease and their interpretation. Lecture III. Lancet 1922; 200: 59– 65.
97. Deuschl G, Raethjen J, Lindemann M et al. The pathophysiology of tremor. Muscle Nerve 2001; 24(6): 716– 735.
98. Flament D, Hore J. Comparison of cerebellar intention tremor under isotonic and isometric conditions. Brain Res 1988; 439(1– 2): 179– 186.
99. Grimaldi G, Manto M. Is essential tremor a purkinjopathy? The role of the cerebellar cortex in its pathogenesis. Mov Disord 2013; 28(13): 1759– 1761. doi: 10.1002/ mds.25645.
100. Filip P, Lungu OV, Manto MU et al. Linking essential tremor to the cerebellum: physiological evidence. Cerebellum 2016; 15(6): 774– 780.
101. Manto M, Bower JM, Conforto AB et al. Consensus paper: roles of the cerebellum in motor control-the diversity of ideas on cerebellar involvement in movement. Cerebellum 2012; 11(2): 457– 487. doi: 10.1007/ s12311-011-0331-9.
102. Leigh RJ, Zee DS. The neurology of eye movements. 5th ed. Oxford: University Press 2015.
103. Kremmyda O, Zwergal A, la Fougère C et al. 4-Aminopyridine suppresses positional nystagmus caused by cerebellar vermis lesion. J Neurol 2013; 260(1): 321– 323. doi: 10.1007/ s00415-012-6737-6.
104. Wagner JN, Glaser M, Brandt T et al. Downbeat nystagmus: aetiology and comorbidity in 117 patients. J Neurol Neurosurg Psychiatry 2008; 79(6): 672– 677.
105. Zee DS. Mechanisms of nystagmus. Am J Otol 1985; Suppl: 30– 34.
106. Selhorst JB, Stark L, Ochs AL et al. Disorders in cerebellar ocular motor control: I. Saccadic overshoot dysmetria an oculographic, control system and clinico-anatomical analysis. Brain 1976; 99(3): 497– 508.
107. Brandauer B, Hermsdörfer J, Beck A et al. Impairments of prehension kinematics and grasping forces in patients with cerebellar degeneration and the relationship to cerebellar atrophy. Clin Neurophysiol 2008; 119(11): 2528– 2537. doi: 10.1016/ j.clinph.2008.07.280.
108. Nowak D, Timmann D, Hermsdörfer J. Deficits of grasping in cerebellar disorders. In: Manto M, Schmahmann J, Rossi F et al (eds). Handbook of the cerebellum and cerebellar disorders. Dordrecht: Springer 2013: 1657– 1667.
109. Darley F, Aronson A, Brown J. Motor speech disorders. Philadelphia: Saunders 1975.
110. Adamaszek M, Strecker K, Kessler C. Impact of cerebellar lesion on syntactic processing evidenced by event-related potentials. Neurosci Lett 2012; 512(2): 78– 82. doi: 10.1016/ j.neulet.2012.01.020.
111. Moretti R, Bava A, Torre P et al. Reading errors in patients with cerebellar vermis lesions. J Neurol 2002; 249(4): 461– 468.
112. Moretti R, Torre P, Antonello RM et al. Peculiar aspects of reading and writing performances in patients with olivopontocerebellar atrophy. Percept Mot Skills 2002; 94(2): 677– 694.
113. Mariën P, Baillieux H, de Smet HJ et al. Cognitive, linguistic and affective disturbances following a right superior cerebellar artery infarction: a case study. Cortex 2009; 45(4): 527– 536. doi: 10.1016/ j.cortex.2007.
114. Foix C, Thévenard A. Les réflexes de posture. Rev Neurol (Paris) 1923; 30: 449– 468.
115. Ropper AH, Brown RH. Disorders of stance and gait. Adams and Victor‘s principles of neurology. 8th ed. New York: McGraw-Hill 2005: 111– 121.
116. Kim JS, Lee H. Vertigo due to posterior circulation stroke. Semin Neurol 2013; 33(3): 179– 184. doi: 10.1055/ s-0033-1354600.
117. Morton SM, Bastian AJ. Cerebellar control of balance and locomotion. Neuroscientist 2004; 10(3): 247– 259.
118. Timmann D, Horak F. Perturbed step initiation in cerebellar subjects 1. Modifications of postural responses. Exp Brain Res 1998; 119(1): 73– 84.
119. Serrao M, Conte C, Casali C et al. Sudden stopping in patients with cerebellar ataxia. Cerebellum 2013; 12(5): 607– 616. doi: 10.1007/ s12311-013-0467-x.
120. Palliyath S, Hallett M, Thomas SL et al . Gait in patients with cerebellar ataxia. Mov Disord 1998; 13(6): 958– 964.
121. Serrao M, Pierelli F, Ranavolo A et al. Gait pattern in inherited cerebellar ataxias. Cerebellum 2012; 11(1): 194– 211. doi: 10.1007/ s12311-011-0296-8.
122. Van de Warrenburg BP, Bakker M, Kremer BP et al. Trunk sway in patients with spinocerebellar ataxia. Mov Disord 2005; 20(8): 1006– 1013. doi: 10.1002/ mds.20486.
123. Van de Warrenburg BP, Steijns JA, Munneke M et al. Falls in degenerative cerebellar ataxias. Mov Disord 2005; 20(4): 497– 500. doi: 10.1002/ mds.20375.
124. Ilg W, Golla H, Thier P et al. Specific influences of cerebellar dysfunctions on gait. Brain 2007; 130(3): 786– 798. doi: 10.1093/ brain/ awl376.
125. Morton SM, Bastian AJ. Mechanisms of cerebellar gait ataxia. Cerebellum 2007; 6(1): 79– 86. doi: 10.1080/ 14734220601187741.
126. Hausdorff JM. Stride variability: beyond length and frequency. Gait Posture 2004; 20(3): 304. doi: 10.1016/ j.gaitpost.2003.08.002.
127. Bortoff GA, Strick PL. Corticospinal terminations in two new-world primates: further evidence that corticomotoneuronal connections provide part of the neural substrate for manual dexterity. J Neurosci 1993; 13(12): 5105– 5118.
128. Santello M, Baud-Bovy G, Jörntell H. Neural bases of hand synergies. Front Comput Neurosci 2013; 7: 23. doi: 10.3389/ fncom.2013.00023.
129. Alstermark B, Isa T. Circuits for skilled reaching and grasping. Annu Rev Neurosci 2012; 35(1): 559– 578. doi: 10.1146/ annurev-neuro-062111-150527.
130. Jeřábek J. Diagnostika pacienta s akutní závratí. Cesk Slov Neurol N 2015; 78/ 111(5): 503– 509. doi: 10.14735/ amcsnn2015503.
131. Strupp M, Kim JS, Murofushi T et al. Bilateral vestibulopathy: diagnostic criteria consensus document of the classification committee of the Bárány Society. J Vestib Res 2017; 27(4): 177– 189. doi: 10.3233/ VES-170 619.
132. Halmagyi GM, Curthoys IS, Halmagyi G et al. A clinical sign of canal paresis. Arch Neurol 1988; 45(7): 737– 739.
133. Choi JY, Lee SH, Kim JS. Central vertigo. Curr Opin Neurol 2018; 31(1): 81– 89. doi: 10.1097/ WCO.0000000000000 511.
134. Edwards MJ, Bhatia KP. Functional (psychogenic) movement disorders: merging mind and brain. Lancet Neurol 2012; 11(3): 250– 260. doi: 10.1016/ S1474-4422(11)70310-6.
135. Serranová T, Růžička E, Roth J. Funkční poruchy hybnosti. Cesk Slov Neurol N 2014; 77/ 110(3): 270– 286.
136. Album D, Westin S. Do diseases have a prestige hierarchy? A survey among physicians and medical students. Soc Sci Med 2008; 66(1): 182– 188. doi: 10.1016/ j.socscimed.2007.07.003.
137. Bruns L. Über Störungen des Gleichgewichts bei Stirnhirntumoren. Dtsch Med Wschr. 1892; 18: 138– 140.
138. Liston R, Mickelborough J, Bene J et al. A new classification of higher level gait disorders in patients with cerebral multi-infarct states. Age Ageing 2003; 32(3): 252– 258.
139. Atchison PR, Thompson PD, Frackowiak RSJ et al. The syndrome of gait ignition failure: a report of six cases. Mov Disord 1993; 8(3): 285– 292. doi: 10.1002/ mds.870080 306.
140. Környey S. Beiträge zur Entwicklungsmechanik und Pathologie des foetalen Zentralnervensystems. Arch Psychiatr 1925; 72: 755– 787.
141. Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev 2000; 71(1): 44– 56.
142. Newman-Toker DE, Kerber KA, Hsieh YH et al. HINTS outperforms ABCD2 to screen for stroke in acute continuous vertigo and dizziness. Acad Emerg Med 2013; 20(10): 986– 996. doi: 10.1111/ acem.12223.
143. Ramirez-Zamora A, Zeigler W, Desai N et al. Treatable causes of cerebellar ataxia. Mov Disord 2015; 30(5): 614– 623. doi: 10.1002/ mds.26158.
144. Fogel BL, Perlman S. An approach to the patient with late-onset cerebellar ataxia. Nat Clin Pract Neurol 2006; 2(11): 629– 635. doi: 10.1038/ ncpneuro0319.
145. Abele M, Bürk K, Schöls L et al. The aetiology of sporadic adult-onset ataxia. Brain 2002; 125(5): 961– 968.
146. Fahn S, Jankovic J, Hallet M, eds. Ataxia pathophysiology and clinical syndrome. Principles and practice of movement disorders. 2nd ed. Edinburgh: Elsevier 2011: 541– 551.
147. Pandolfo M, Manto M. Cerebellar and afferent ataxias. Continuum 2013; 19 (5 Movement Disorders): 1312– 1343. doi: 10.1212/ 01.CON.0000436158.39285.22.
148. Mitoma H, Adhikari K, Aeschlimann D et al. Consensus Paper: neuroimmune mechanisms of cerebellar ataxias. Cerebellum 2016; 15(2): 213– 232. doi: 10.1007/ s12311-015-0664-x.
149. Ilg W, Bastian AJ, Boesch S et al. Consensus paper: management of degenerative cerebellar disorders. Cerebellum 2014; 13(2): 248– 268. doi: 10.1007/ s12311-013-0531-6.
150. Zumrová A, Kopečková M, Mušová Z et al. Autosomálně dominantní spinocerebelární ataxie. Neurol praxi 2007; 8(5): 277– 282.
151. Hadjivassiliou M, Rao DG, Wharton SB et al. Sensory ganglionopathy due to gluten sensitivity. Neurology 2010; 75(11): 1003– 1008. doi: 10.1212/ WNL.0b013e3181f25ee0.
152. Honnorat J, Saiz A, Giometto B et al. Cerebellar ataxia with anti-glutamic acid decarboxylase antibodies: study of 14 patients. Arch Neurol 2001; 58(2): 225– 230.
153. Mahta A, Vijayvergia N, Bhavsar T et al. Diagnostic approach to a patient with paraneoplastic neurological syndrome. World J Oncol 2012; 3(5): 243– 246. doi: 10.4021/ wjon571w.
154. Nakagawa H, Yoneda M, Fujii A et al. Hashimoto’s encephalopathy presenting with progressive cerebellar ataxia. J Neurol Neurosurg Psychiatry 2007; 78(2): 196– 197. doi: 10.1136/ jnnp.2006.093005.
155. Laukka JJ, Kamholz J, Bessert D et al. Novel pathologic findings in patients with Pelizaeus-Merzbacher disease. Neurosci Lett 2016; 627: 222– 232. doi: 10.1016/ j.neulet.2016.05.028.
156. Azmanov DN, Kowalczuk S, Rodgers H et al. Further evidence for allelic heterogeneity in Hartnup disorder. Hum Mutat 2008; 29(10): 1217– 1221. doi: 10.1002/ humu.20777.
157. Morton DH, Strauss KA, Robinson DL et al. Diagnosis and treatment of maple syrup disease: a study of 36 patients. Pediatrics 2002; 109(6): 999– 1008.
158. Gorman MP. Update on diagnosis, treatment, and prognosis in opsoclonus– myoclonus– ataxia syndrome. Curr Opin Pediatr 2010; 22(6): 745– 750. doi: 10.1097/ MOP.0b013e32833fde3f.
159. Distefano G, Praticò AD. Actualities on molecular pathogenesis and repairing processes of cerebral damage in perinatal hypoxic-ischemic encephalopathy. Ital J Pediatr 2010; 36: 63. doi: 10.1186/ 1824-7288-36-63.
160. Rothblum-Oviatt C, Wright J, Lefton-Greif MA et al. Ataxia telangiectasia: a review. Orphanet J Rare Dis 2016; 11(1): 159. doi: 10.1186/ s13023-016-0543-7.
161. Pavone P, Praticò AD, Pavone V et al. Ataxia in children: early recognition and clinical evaluation. Ital J Pediatr 2017; 43(1): 6. doi: 10.1186/ s13052-016-0325-9.
162. Ljunggren M, Persson J, Salzer J. Dizziness and the acute vestibular syndrome at the emergency department: a population-based descriptive study. Eur Neurol 2017; 79(1– 2): 5– 12. doi: 10.1159/ 000481982.
163. Lefaucheur J-P. [Painful neuropathies and small fiber involvement]. Rev Neurol (Paris) 2014; 170(12): 825– 836. doi: 10.1016/ j.neurol.2014.10.008.
164. Tavee JO. Immune Axonal Polyneuropathy. Continuum 2017; 23 (5, Pheripheral Nerve and Motor Neuron Disorders): 1394– 1410. doi: 10.1212/ CON.0000000000000523.
165. Iżycki D, Niezgoda AA, Kaźmierczak M et al. Chemotherapy-induced peripheral neuropathy – diagnosis, evolution and treatment. Ginekol Pol 2016; 87(7): 516– 521. doi: 10.5603/ GP.2016.0036.
166. Pavone P, Praticò AD, Ruggieri M et al. Acquired peripheral neuropathy: a report on 20 children. Int J Immunopathol Pharmacol 2012; 25(2): 513– 517. doi: 10.1177/ 039463201202500222.
Štítky
Paediatric neurology Neurosurgery NeurologyČlánok vyšiel v časopise
Czech and Slovak Neurology and Neurosurgery
2018 Číslo 2
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Memantine Eases Daily Life for Patients and Caregivers
- Spasmolytic Effect of Metamizole
Najčítanejšie v tomto čísle
- Ataxia
- Brain biopsy in 10 key points – what can a neurologist expect from the neurosurgeon and the neuropathologist?
- Fabry disease, an overview and the most common neurological manifestations
- Glucose transporter-1 deficiency syndrome – expanding the clinical spectrum of a treatable disorder