A comparison of mini-invasive percutaneous versus classic open pedicle screw fixation of thoracolumbar fractures – retrospective analysis
Authors:
P. Krupa; M. Bartoš; T. Česák; V. Málek; T. Hosszú
Authors place of work:
Neurochirurgická klinika LF UK a FN Hradec Králové
Published in the journal:
Cesk Slov Neurol N 2018; 81(6): 678-685
Category:
Original Paper
doi:
https://doi.org/10.14735/amcsnn2018678
Summary
Aims:
Evaluation of pedicular screw insertion precision, Cobb’s angle, vertebral body angulation (VBA), vertebral body index (VBI), duration of surgery and X-ray exposure time in classic open and mini-invasive percutaneous stabilisation of traumatic vertebral fractures of the middle and lower thoracic and lumbar spine.
Patients and methods:
Retrospective analysis of patients who suffered from traumatic vertebral fractures of the middle and lower thoracic and lumbar spine. Patients were operated on by classic open posterior stabilisation (OPEN group) or by mini-invasive percutaneous posterior stabilisation (MIS group) with insertion of pedicular screws. In this study, patients with traumatic T8– L5 vertebral fracture(s) who had postoperative CT scans during January 1 2015–January 1 2018 were included. Pedicular screw position was evaluated on axial planes of the postoperative CT scan and classified using the modified Gertzbein’s grading scale. Furthermore, parameters of the kyphosis (Cobb’s angle, VBA and VBI) of the involved region were calculated and compared pre- and postoperatively. Finally, using patients’ charts the duration of surgery and X-ray exposure time and Kerma-Area Product were compared.
Results:
During 2015– 2018, a total of 147 patients were included in the study. The MIS group had 47 patients, and the OPEN group had 100 patients. Correct pedicular screw position was achieved in 93.1% in the MIS group and in 94.4% in the OPEN group. We found no significant difference in Cobb’s angle, VBI and VBA between the groups. Duration of surgery was significantly shorter in the MIS group – 91 vs. 103 min. X-ray exposure time was significantly longer in the MIS group – 45 vs. 33 s. We had a 2% infection rate in the OPEN group, but we did not record any such complications in the MIS group.
Conclusions:
The total number of pedicular screw malpositions in our study did not differ significantly between the groups. We registered a higher number of grade 3A pedicular screw malpositions (medial pedicle breach > 4 mm) according to the modified Gertzbein’s grading scale leading to a higher number of reoperations in the MIS group. However, this was likely due to learning curve issues. In the OPEN group, the duration of surgery was significantly longer in the OPEN group; on the other hand, X-ray exposure time was significantly shorter. There were no infectious complications in the MIS group.
Key words:
open stabilisation – mini-invasive percutaneous stabilisation – traumatic vertebral fractures – pedicular screw – X-ray exposure time
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Chinese summary - 摘要
王莹莹 - 微创经皮与经典开胸椎弓根螺钉内固定治疗胸腰椎骨折的比较 - 回顾性分析
目的:
评估椎弓根螺钉插入精度,Cobb角,椎体角度(VBA),椎体指数(VBI),手术持续时间和X射线暴露时间的经典开放和微创经皮稳定创伤性椎体骨折的中间和 下胸椎和腰椎。
患者和方法:
回顾性分析中下胸椎和腰椎创伤性椎体骨折患者的临床资料。 患者通过经典开放后路稳定(OPEN组)或通过微创经皮后路稳定(MIS组)和椎弓根螺钉插入进行手术。 在本研究中,包括在2015年1月1日至2018年1月1日期间进行了术后CT扫描的创伤性T8-L5椎体骨折患者。 在术后CT扫描的轴平面上评估椎弓根螺钉位置,并使用改良的Gertzbein分级量表进行分类。 此外,计算并在术前和术后比较所涉及区域的脊柱后凸参数(Cobb角,VBA和VBI)。 最后,使用患者的图表,比较手术持续时间和X射线暴露时间和Kerma-区域产品。
结果:
在2015年至2018年期间,共有147名患者参与了该研究。 MIS组有47名患者,OPEN组有100名患者。 MIS组的椎弓根螺钉位置正确率为93.1%,OPEN组为94.4%。 我们发现各组之间的Cobb角,VBI和VBA没有显著差异。 MIS组的手术时间明显缩短 - 91对103分钟。 MIS组的X射线暴露时间明显更长--45对33秒。 我们在OPEN组中感染率为2%,但我们没有在MIS组中记录任何此类并发症。
结论:
在我们的研究中,椎弓根螺钉错位的总数在各组之间没有显著差异。 我们根据改良的Gertzbein分级量表登记了更高数量的3A级椎弓根螺钉错位(内侧椎弓根缺损> 4 mm),导致MIS组的再次手术次数增加。 然而,这可能是由于学习曲线问题。 在OPEN组,OPEN组的手术时间明显延长; 另一方面,X射线曝光时间明显缩短。 MIS组没有感染性并发症。
关键词:
开放式稳定 - 微创经皮稳定 - 创伤性椎骨骨折 - 椎弓根螺钉 - X射线暴露时间
Zdroje
1. Hu R, Mustard CA, Burns C. Epidemiology of incident spinal fracture in a complete population. Spine (Phila Pa 1976) 1996; 21(4): 492– 499.
2. Gertzbein SD. Spine update. Classification of thoracic and lumbar fractures. Spine (Phila Pa 1976) 1994; 19(5): 626– 628.
3. Magerl F, Aebi M, Gertzbein SD et al. A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 1994; 3(4): 184– 201.
4. Ghobrial GM, Jallo J. Thoracolumbar spine trauma: review of the evidence. J Neurosurg Sci 2013; 57(2): 115– 122.
5. Denis F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine (Phila Pa 1976) 1983; 8(8): 817– 831.
6. Wood KB, Khanna G, Vaccaro AR et al. Assessment of two thoracolumbar fracture classification systems as used by multiple surgeons. J Bone Joint Surg Am 2005; 87(7): 1423– 1429.
7. Reinhold M, Audige L, Schnake KJ et al. AO spine injury classification system: a revision proposal for the thoracic and lumbar spine. Eur Spine J 2013; 22(10): 2184– 2201. doi: 10.1007/ s00586-013-2738-0.
8. Vaccaro AR, Oner C, Kepler CK et al. AOSpine thoracolumbar spine injury classification system: fracture description, neurological status, and key modifiers. Spine (Phila Pa 1976) 2013; 38(23): 2028– 2037. doi: 10.1097/ BRS.0b013e3182a8a381.
9. Denis F, Armstrong GW, Searls K et al. Acute thoracolumbar burst fractures in the absence of neurologic deficit. A comparison between operative and nonoperative treatment. Clin Orthop Relat Res 1984; (189): 142– 149.
10. Wood K, Buttermann G, Mehbod A et al. Operative compared with nonoperative treatment of a thoracolumbar burst fracture without neurological deficit. A prospective, randomized study. J Bone Joint Surg Am 2003; 85-A(5): 773– 781.
11. Mumford J, Weinstein JN, Spratt KF et al. Thoracolumbar burst fractures. The clinical efficacy and outcome of nonoperative management. Spine (Phila Pa 1976) 1993; 18(8): 955– 970.
12. Shen WJ, Shen YS. Nonsurgical treatment of three-column thoracolumbar junction burst fractures without neurologic deficit. Spine (Phila Pa 1976) 1999; 24(4): 412– 415.
13. Shen WJ, Liu TJ, Shen YS. Nonoperative treatment versus posterior fixation for thoracolumbar junction burst fractures without neurologic deficit. Spine (Phila Pa 1976) 2001; 26(9): 1038– 1045.
14. Kim KT, Lee SH, Suk KS et al. The quantitative analysis of tissue injury markers after mini-open lumbar fusion. Spine (Phila Pa 1976) 2006; 31(6): 712– 716.
15. Wiltse LL, Bateman JG, Hutchinson RH et al. The paraspinal sacrospinalis-splitting approach to the lumbar spine. J Bone Joint Surg Am 1968; 50(5): 919– 926.
16. Pang W, Zhang GL, Tian W et al. Surgical treatment of thoracolumbar fracture through an approach via the paravertebral muscle. Orthop Surg 2009; 1(3): 184– 188. doi: 10.1111/ j.1757-7861.2009.00032.x.
17. Gejo R, Matsui H, Kawaguchi Y et al. Serial changes in trunk muscle performance after posterior lumbar surgery. Spine (Phila Pa 1976) 1999; 24(10): 1023– 1028.
18. Lehmann W, Ushmaev A, Ruecker A et al. Comparison of open versus percutaneous pedicle screw insertion in a sheep model. Eur Spine J 2008; 17(6): 857– 863. doi: 10.1007/ s00586-008-0652-7.
19. Grass R, Biewener A, Dickopf A et al. Percutaneous dorsal versus open instrumentation for fractures of the thoracolumbar border. A comparative, prospective study. Unfallchirurg 2006; 109(4): 297– 305. doi: 10.1007/ s00113-005-1037-6.
20. Magerl FP. Stabilization of the lower thoracic and lumbar spine with external skeletal fixation. Clin Orthop Relat Res 1984; (189): 125– 141.
21. Assaker R. Minimal access spinal technologies: state-of-the-art, indications, and techniques. Joint Bone Spine 2004; 71(6): 459– 469. doi: 10.1016/ j.jbspin.2004.08.006.
22. Palmisani M, Gasbarrini A, Brodano GB et al. Minimally invasive percutaneous fixation in the treatment of thoracic and lumbar spine fractures. Eur Spine J 2009; 18 (Suppl 1): 71– 74. doi: 10.1007/ s00586-009-0989-6.
23. Rampersaud YR, Foley KT, Shen AC et al. Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine (Phila Pa 1976) 2000; 25(20): 2637– 2645.
24. Gertzbein SD, Robbins SE. Accuracy of pedicular screw placement in vivo. Spine (Phila Pa 1976) 1990; 15(1): 11– 14.
25. Laudato PA, Pierzchala K, Schizas C. Pedicle screw insertion accuracy using O-arm, robotic guidance or freehand technique: a comparative study. Spine (Phila Pa 1976) 2018; 43(6): E373– E378. doi: 10.1097/ BRS.0000000000002449.
26. McAnany SJ, Overley SC, Kim JS et al. Open versus minimally invasive fixation techniques for thoracolumbar trauma: a meta-analysis. Global Spine J 2016; 6(2): 186– 194. doi: 10.1055/ s-0035-1554777.
27. Phan K, Rao PJ, Mobbs RJ. Percutaneous versus open pedicle screw fixation for treatment of thoracolumbar fractures: systematic review and meta-analysis of comparative studies. Clin Neurol Neurosurg 2015; 135: 85– 92.
28. Vanek P, Bradac O, Konopkova R et al. Treatment of thoracolumbar trauma by short-segment percutaneous transpedicular screw instrumentation: prospective comparative study with a minimum 2-year follow-up. J Neurosurg Spine 2014; 20(2): 150– 156. doi: 10.3171/ 2013.11.SPINE13479.
29. Sun XY, Zhang XN, Hai Y. Percutaneous versus traditional and paraspinal posterior open approaches for treatment of thoracolumbar fractures without neurologic deficit: a meta-analysis. Eur Spine J 2017; 26(5): 1418– 1431. doi: 10.1007/ s00586-016-4818-4.
30. Pishnamaz M, Oikonomidis S, Knobe M et al. Open versus percutaneous stabilization of thoracolumbar spine fractures: a short-term functional and radiological follow-up. Acta Chir Orthop Traumatol Cech 2015; 82(4): 274– 281.
31. Ringel F, Stoffel M, Stuer C et al. Minimally invasive transmuscular pedicle screw fixation of the thoracic and lumbar spine. Neurosurgery 2006; 59 (4 Suppl 2): ONS361-ONS366. doi: 10.1227/ 01.NEU.0000223505.07815.74.
32. Dahdaleh NS, Smith ZA, Hitchon PW. Percutaneous pedicle screw fixation for thoracolumbar fractures. Neurosurg Clin N Am 2014; 25(2): 337– 346. doi: 10.1016/ j.nec.2013.12.011.
33. Korovessis P, Hadjipavlou A, Repantis T. Minimal invasive short posterior instrumentation plus balloon kyphoplasty with calcium phosphate for burst and severe compression lumbar fractures. Spine (Phila Pa 1976) 2008; 33(6): 658– 667. doi: 10.1097/ BRS.0b013e318166e0bb.
34. Tinelli M, Matschke S, Adams M et al. Correct positioning of pedicle screws with a percutaneous minimal invasive system in spine trauma. Orthop Traumatol Surg Res 2014; 100(4): 389– 393. doi: 10.1016/ j.otsr.2014.03.015.
35. Park Y, Ha JW, Lee YT et al. Percutaneous placement of pedicle screws in overweight and obese patients. Spine J 2011; 11(10): 919– 924. doi: 10.1016/ j.spinee.2011.07.029.
36. Wanek T, Adamus M, Novák V et al. Porovnání peroperační radiační expozice při otevřené a miniinvazivní transpedikulární fixaci hrudní a bederní páteře. Cesk Slov Neurol N 2013; 76/ 109(5): 608– 613.
37. Kruger A, Rammler K, Ziring E et al. Percutaneous minimally invasive instrumentation for traumatic thoracic and lumbar fractures: a prospective analysis. Acta Orthop Belg 2012; 78(3): 376– 381.
38. Wang HW, Li CQ, Zhou Y et al. Percutaneous pedicle screw fixation through the pedicle of fractured vertebra in the treatment of type A thoracolumbar fractures using Sextant system: an analysis of 38 cases. Chin J Traumatol 2010; 13(3): 137– 145.
39. Ni WF, Huang YX, Chi YL et al. Percutaneous pedicle screw fixation for neurologic intact thoracolumbar burst fractures. J Spinal Disord Tech 2010; 23(8): 530– 537. doi: 10.1097/ BSD.0b013e3181c72d4c.
40. Wild MH, Glees M, Plieschnegger C et al. Five-year follow-up examination after purely minimally invasive posterior stabilization of thoracolumbar fractures: a comparison of minimally invasive percutaneously and conventionally open treated patients. Arch Orthop Trauma Surg 2007; 127(5): 335– 343. doi: 10.1007/ s00402-006-0264-9.
41. Lee JK, Jang JW, Kim TW et al. Percutaneous short-segment pedicle screw placement without fusion in the treatment of thoracolumbar burst fractures: is it effective? Comparative study with open short-segment pedicle screw fixation with posterolateral fusion. Acta Neurochir (Wien) 2013; 155(12): 2305– 2312. doi: 10.1007/ s00701-013-1859-x.
42. Diniz JM, Botelho RV. Is fusion necessary for thoracolumbar burst fracture treated with spinal fixation? A systematic review and meta-analysis. J Neurosurg Spine 2017; 27(5): 584– 592. doi: 10.3171/ 2017.1.SPINE161014.
43. Dhall SS, Wadhwa R, Wang MY et al. Traumatic thoracolumbar spinal injury: an algorithm for minimally invasive surgical management. Neurosurg Focus 2014; 37(1): E9.
44. Court C, Vincent C. Percutaneous fixation of thoracolumbar fractures: current concepts. Orthop Traumatol Surg Res 2012; 98(8): 900– 909. doi: 10.1016/ j.otsr.2012.09.014.
45. Zhao QM, Gu XF, Yang HL et al. Surgical outcome of posterior fixation, including fractured vertebra, for thoracolumbar fractures. Neurosciences (Riyadh) 2015; 20(4): 362– 367. doi: 10.17712/ nsj.2015.4.20150318.
46. Grossbach AJ, Dahdaleh NS, Abel TJ et al. Flexion-distraction injuries of the thoracolumbar spine: open fusion versus percutaneous pedicle screw fixation. Neurosurg Focus 2013; 35(2): E2. doi: 10.3171/ 2013.6.FOCUS13176.
47. Kakarla UK, Little AS, Chang SW et al. Placement of percutaneous thoracic pedicle screws using neuronavigation. World Neurosurg 2010; 74(6): 606– 610. doi: 10.1016/ j.wneu.2010.03.028.
Štítky
Paediatric neurology Neurosurgery NeurologyČlánok vyšiel v časopise
Czech and Slovak Neurology and Neurosurgery
2018 Číslo 6
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Memantine Eases Daily Life for Patients and Caregivers
- Spasmolytic Effect of Metamizole
Najčítanejšie v tomto čísle
- Diagnostics, symptomatology and findings in diseases and disorders of the autonomic nervous system in neurology
- New-onset refractory status epilepticus and considered spectrum disorders (NORSE/ FIRES)
- Clinical results of cervical discectomy and fusion with anchored cage – prospective study with a 24-month follow-up
- Pragnancy and multiple sclerosis from a neurologist’s point of view