#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Multiple sclerosis and the role of gut microbiota during a harmful inflammatory response


Authors: J. Krejsek
Authors‘ workplace: Ústav klinické imunologie a alergologie LF UK a FN Hradec Králové
Published in: Cesk Slov Neurol N 2019; 82(2): 141-147
Category: Review Article
doi: https://doi.org/10.14735/amcsnn2019141

Overview

Majority of body compartments, especial­ly the gut, skin, respiratory and genitourinary tracts, is normal­ly inhabited by highly complex microbial populations designated as microbio­ta. Gut microbio­ta is the best studied so far. Colonisation patterns of gut microbio­ta which are acquired early dur­­ing ontogeny, especially during the infant’s age, are normal­ly maintained for life. Both mucosal and systemic im­munity, which are highly individualized, are determined by physiological gut microbio­ta. Dysbio­sis which is disturbed gut microbio­ta is fol­lowed by extensive negative impacts on human physiology. Recently, substantial links between gut microbio­ta and CNS were found. Whereas physiological colonisation patterns are support­­ing optimal development of brain structures by provid­­ing them with some energy and homeostatic regulations on inflammatory processes, dysbio­tic microbio­ta results in abnormal functional polarisation of T cell subsets. The result is the initiation and the progres­sion of a harmful inflam­matory response which might be a part of the pathophysiological proces­ses leading to the development of MS. Gut microbio­ta could be positively modulated via optimal nutrition rich in prebio­tic oligosaccharides, probio­tics, and postbio­tics. The optimalisation of nutrition can influence harmful inflam­mation in MS patients as evidenced in some animal models. Clinical trials to evaluate the ef­ficacy of fecal microbio­ta transplantation in MS patients can be expected in the near future.

The author declares he has no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manu­script met the ICMJE “uniform requirements” for biomedical papers.

Keywords:

communication – Multiple sclerosis – gut microbiota – harmful inflammation – Modulation


Sources

1. Surana NK, Kasper DL. Decipher­­ing the tete-a-tete between the microbio­ta and the im­mune system. J Clin Invest 2014; 124(10): 4197– 4203. doi: 10.1172/ JCI72332. 
2. Stanley D, Moore RJ, Wong CH. An insight into intestinal mucosal microbio­ta disruption after stroke. Sci Rep 2018; 8(1): 568. doi: 10.1038/ s41598-017-18904-8.
3. Vieira Borba V, Sharif K, Shoenfeld Y. Breastfeed­­ing and autoim­munity: program­­ing health from the begin­ning. Am J Reprod Im­munol 2018; 79(1). doi: 10.1111/ aji.12778. 
4. Wekerle H. Brain autoim­munity and intestinal microbio­ta: 100 tril­lion game changers. Trends Im­munol 2017; 37(7): 483– 497.
5. Ghaisas S, Maher J, Kanthasamy A. Gut microbio­me in health and dis­ease: link­­ing the microbio­me-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative dis­eases. Pharmacol Ther 2016; 158: 52– 62. doi: 10.1016/ j.pharmthera.2015.11.012.
6. Statovci D, Aguilera M, MacShar­ry J et al. The impact of western diet and nutrients on the microbio­ta and im­mune response at mucosal interfaces. Front Im­munol 2017; 8: 838. doi: 10.3389/ fim­mu.2017.00838.
7. Perez-Munoz ME, Ar­rieta MC, Ramer-Tait AE et al. A critical as­ses­sment of the „sterile womb“ and „in utero colonization“ hypotheses: implications for research on the pioneer infant microbio­me. Microbio­me 2017; 5(1): 48. doi: 10.1186/ s40168-017-0268-4.
8. Lazar V, Ditu LM, Pircalabio­ru GG et al. Aspects of gut microbio­ta and im­mune system interactions in infectious dis­eases, im­munopathology, and cancer. Front Im­munol 2018; 9: 1830. doi: 10.3389/ fim­mu.2018.01830.
9. Zamvil SS, Spencer CM, Baranzini SE et al. The gut microbio­me in neuromyelitis optica. Neurotherapeutics 2018; 15(1): 92– 101. doi: 10.1007/ s13311-017-0594-z.
10. Virtanen S, Kal­liala I, Nieminen P et al. Comparative analysis of vaginal microbio­ta sampl­­ing us­­ing 16S rRNA gene analysis. PLoS One 2017; 12(7): e0181477. doi: 10.1371/ journal.pone.0181477.
11. Krejsek J, Andrys C, Krcmova I. Imunologie člověka. 1. vyd. Hradec Králové: Garamon 2016. 
12. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cel­ls in the body. PLoS Biol 2016; 14(8): e1002533. doi: 10.1371/ journal.pbio­.1002533. 
13. Bilen M, Dufour JC, Lagier JC et al. The contribution of culturomics to the repertoire of isolated human bacterial and archaeal species. Microbio­me 2018; 6(1): 94. doi: 10.1186/ s40168-018-0485-5.
14. Maranduba CM, De Castro SB, de Souza GT et al. Intestinal microbio­ta as modulators of the im­mune system and neuroim­mune system: Impact on the host health and homeostasis. J Im­munol Res 2015: 931574. doi: 10.1155/ 2015/ 931574.
15. Ma N, Guo P, Zhang J et al. Nutrients mediate intestinal bacteria-mucosal im­mune cros­stalk. Front Im­munol 2018; 9: 5. doi: 10.3389/ fim­mu.2018.00005.
16. Kho ZY, Lal SK. The human gut microbio­me –  a potential control­ler of wel­lness and dis­ease. Front Microbio­l 2018; 9: 1835. doi: 10.3389/ fmicb.2018.01835.
17. Hrnčíř Z. Kloubní zánět a mikrobi na škále od mikrobio­mu po septickou artritidu. Čes Revmatol 2017; 25(4): 164– 171.
18. Cox LM, Weiner HL. Microbio­ta signal­­ing pathways that influence neurologic dis­ease. Neurotherapeutics 2018; 15(1): 135– 145. doi: 10.1007/ s13311-017-0598-8.
19. van den Hoogen WJ, Laman JD, Hart BA. Modulation of multiple sclerosis and its animal model experimental autoim­mune encephalomyelitis by food and gut microbio­ta. Front Im­munol 2017; 8: 1081. doi: 10.3389/ fim­mu.2017.01081.
20. Alkasir R, Li J, Li X et al. Human gut microbio­ta: the links with dementia development. Protein Cell 2017; 8(2): 90– 102. doi: 10.1007/ s13238-016-0338-6.
21. Hamilton MK, Raybould HE. Bugs, guts and brains, and the regulation of food intake and body weight. Int J Obes Suppl 2016; 6(Suppl 1): S8– S14. doi: 10.1038/ ijosup.2016.3.
22. Fard NA, Azizi G, Mirshafiey A. The potential role of T helper cell 22 and IL-22 in im­munopathogenesis of multiple sclerosis. In­nov Clin Neurosci 2016; 13(7– 8): 30– 36. 
23. Fleck AK, Schuppan D, Wiendl H et al. Gut-CNS-axis as pos­sibility to modulate inflam­matory dis­ease activity-implictions for multiple sclerosis. Int J Mol Sci 2017; 18(7): 1526. doi: 10.3390/ ijms18071526. 
24. Roy Sarkar S, Banerjee S. Gut microbio­ta in neurodegenerative disorders. J Neuroim­munol 2019; 328: 98– 104. doi: 10.1016/ j.jneuroim.2019.01.004.
25. Christiansen SH, Murphy RA, Juul-Madsen K et al. The im­munomodulatory drug glatiramer acetate i salso an ef­fective antimicrobial agent that kil­ls Gram-negative bacteria. Sci Rep 2017; 7(1): 15653. doi: 10.1038/ s41598-017-15969-3. 
26. Forbes JD, Bernstein CN, Tremlett H et al. A fungal world: could the gut mycobio­me be involved in neurological dis­ease? Front Microbio­l 2019; 9: 3249. doi: 10.3389/ fmicb.2018.03249.
27. Bhargava P, Mowry EM. Gut microbio­me and multiple sclerosis. Curr Neurol Neurosci Rep 2014; 14(10): 492. doi: 10.1007/ s11910-014-0492-2. 
28. Adamczyk-Sowa M, Medrek A, Madej P et al. Does the gut microbio­ta influcence im­munity and inflam­mation in multiple sclerosis pathophysiology? J Im­munol Res 2017; 7904821. doi: 10.1155/ 2017/ 7904821.
29. Ghareghani M, Reiter RJ, Zibara K et al. Latitude, vitamin D, melatonin, and gut microbio­ta act in concert to ini­tiate multiple sclerosis: a new mechanistic pathway. Fron Im­munol 2018; 9: 2484. doi: 10.3389/ fim­mu.2018. 02484. 
30. Riccio P, Ros­sano R. Diet, gut microbio­ta, and vitamins D + A in multiple sclerosis. Neurotherapeutics 2018; 15(1): 75– 91. doi: 10.1007/ s13311-017-0581-4.
31. Vieira AT, Fukumori C, Fer­reira CM. New insights into therapeutic strategies for gut microbio­ta modulation in inflam­matory dis­eases. Clin Transl Im­munology 2016; 5(6): e87. doi: 10.1038/ cti.2016.38.
32. Saresel­la M, Mendozzi L, Ros­si V et al. Im­munological and clinical ef­fect of diet modulation of the gut microbio­me in multiple sclerosis patients: a pilot study. Front Im­munol 2017; 8: 1391. doi: 10.3389/ fim­mu.2017.01391.
33. Azad MA, Sarker M, Li T et al. Probio­tic species in the modulation of gut microbio­ta: an overview. Biomed Res Int 2018; 9478630. doi: 10.1155/ 2018/ 9478630.
34. Evrensel A, Ceylan ME. Fecal microbio­ta transplantation and its usage in neuropsychiatric disorders. Clin Psychopharmacol Neurosci 2016; 14(3): 231– 237. doi: 10.9758/ cpn.2016. 14.3.231.
35. Forbes JD, Chen CY, Knox NC et al. A comparative study of the gut microbio­ta in im­mune-mediated inflam­matory dis­eases-does a com­mon dysbio­sis exist? Microbio­me 2018; 6(1): 221. doi: 10.1186/ s40168-018-0603-4.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 2

2019 Issue 2
Popular this week
Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#