Klinicko-radiologický paradox u roztroušené sklerózy – význam vyšetření míchy
Authors:
M. Andělová 1; K. Vodehnalová 1; J. Krásenský 2; T. Uher 1; D. Šťastná 1; I. Menkyová 1,3; D. Horáková 1; M. Vaněčková 2
Authors place of work:
Neurologická klinika a Centrum klinických neurověd, 1. LF UK a VFN v Praze
1; Radiodiagnostická klinika, 1. LF UK a VFN v Praze
2; II. neurologická klinika LF UK a UNB, Bratislava, Slovensko
3
Published in the journal:
Cesk Slov Neurol N 2021; 84(6): 547-554
Category:
Original Paper
doi:
https://doi.org/10.48095/cccsnn2021547
Summary
Aim: Insufficient correlation between the findings on conventional MRI and physical disability, the so-called clinical-radiological paradox, complicates the estimation of individual prognosis and therapeutic decisions in patients with MS. The primary goal of our work was to elucidate the role of spinal cord atrophy in the situation of the clinical-radiological paradox. A secondary objective was to identify predictors of spinal cord volume in healthy individuals. Patients and methods: A total of 2,009 patients with relapsing-remitting and secondary progressive MS and 102 healthy volunteers underwent a 3T MRI examination of the brain and spinal cord with automatic volumetry. Patients with Expanded Disability Status Scale (EDSS) ≤ 1.5 were matched with patients with EDSS ≥ 3.5 of the same age, with the same disease duration and identical intracranial lesion volume. Moreover, we identified patients with an unusually high respectively low lesion volume and disproportionally low respectively severe physical disability. In these groups representing the clinical-radiological paradox, we compared global and regional spinal cord and brain volumes by using parametric and nonparametric tests. We also evaluated the proportion of patients with brain and/or spinal cord atrophy identified by 2 standard deviations from normative values. Results: 245 patients with EDSS ≤ 1.5 differed from 245 matched patients with and EDSS ≥ 3.5 only in the normalized spinal cord volume (P = 0.002) and normalized cerebral white matter volume (P = 0.028). Cerebral white matter was one of the predictors of spinal cord volume in healthy individuals. Patients with unusually high lesion load and minimal physical disability had lower global and regional brain volumes, however, their normalized spinal cord volumes did not differ from those of non-paradox patients and from patients with a low lesion load and severe disability. The lowest non-normalized (absolute) spinal cord volumes were observed in patients with a low lesion load and severe disability. Conclusion: Spinal cord volume may explain the discrepancy between intracranial lesion load and physical disability.
Keywords:
Brain – Multiple sclerosis – Atrophy – Spinal cord – magnetic resonance imaging – white matter
Zdroje
1. Barkhof F. The clinico-radiological paradox in multiple sclerosis revisited. Curr Opin Neurol 2002; 15 (3) 239–245. doi: 10.1097/00019052-200206000-00003.
2. Chard D, Trip SA. Resolving the clinico-radiological paradox in multiple sclerosis. F1000Res 2017; 6: 1828. doi: 10.12688/f1000research.11932.1.
3. Lucchinetti C, Brück W, Parisi J et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000; 47 (6): 707–717. doi: 10.1002/1531-8249 (200006) 47: 6<707:: aid-ana3>3.0.co; 2-q.
4. Granziera C, Wuerfel J, Barkhof F et al. Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis. Brain 2021; 144 (5): 1296–1311. doi: 10.1093/brain/awab029.
5. Sumowski JF, Rocca MA, Leavitt VM et al. Brain reserve against physical disability progression over 5 years in multiple sclerosis. Neurology 2016; 86 (21): 2006–2009. doi: 10.1212/WNL.0000000000002702.
6. Uher T, Krasensky J, Malpas C et al. Evolution of brain volume loss rates in early stages of multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2021; 8 (3): e979. doi: 10.1212/NXI.0000000000000979.
7. Sastre-Garriga J, Pareto D, Rovira A. Brain atrophy in multiple sclerosis: clinical relevance and technical aspects. Neuroimaging Clin N Am 2017; 27 (2): 289–300. doi: 10.1016/j.nic.2017.01.002.
8. Eshaghi A, Marinescu RV, Young AL et al. Progression of regional grey matter atrophy in multiple sclerosis. Brain 2018; 141 (6): 1665–1677. doi: 10.1093/brain/awy088.
9. Tsagkas C, Parmar K, Pezold S et al. Classification of multiple sclerosis based on patterns of CNS regional atrophy covariance. Hum Brain Mapp 2021; 42 (8): 2399–2415. doi: 10.1002/hbm.25375.
10. Healy BC, Buckle GJ, Ali EN et al. Characterizing clinical and MRI dissociation in patients with multiple sclerosis. J Neuroimaging 2017; 27 (5): 481–485. doi: 10.1111/jon.12433.
11. Schmitter D, Roche A, Maréchal B et al. An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer’s dinase. Neuroimage Clin 2014; 7: 7–17. doi: 10.1016/j.nicl.2014.11.001.
12. Chen X, Qian T, Maréchal B et al. Quantitative volume-based morphometry in focal cortical dysplasia: a pilot study for lesion localization at the individual level. Eur J Radiol 2018; 105: 240–245. doi: 10.1016/j.ejrad.2018.06.019.
13. Fang E, Ann CN, Maréchal B et al. Differentiating Parkinson’s disease motor subtypes using automated volume-based morphometry incorporating white matter and deep gray nuclear lesion load. J Magn Reson Imaging 2020; 51 (3): 748–756. doi: 10.1002/jmri.26887.
14. Uher T, Krasensky J, Vaneckova M et al. A novel semiautomated pipeline to measure brain atrophy and lesion burden in multiple sclerosis: a long-term comparative study. J Neuroimaging 2017; 27 (6): 620–629. doi: 10.1111/jon.12445.
15. Andelova M, Uher T, Krasensky J et al. Additive effect of spinal cord volume, diffuse and focal cord pathology on disability in multiple sclerosis. Front Neurol 2019; 10: 820. doi: 10.3389/fneur.2019.00820.
16. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983; 33 (11): 1444–1452. doi: 10.1212/ wnl.33.11.1444.
17. Engl C, Schmidt P, Arsic M et al. Brain size and white matter content of cerebrospinal tracts determine the upper cervical cord area: evidence from structural brain MRI. Neuroradiology 2013; 55 (8): 963–970. doi: 10.1007/s00234-013-1204-3.
18. Droby A, Fleischer A, Carnini M et al. The impact of isolated lesions on white-matter fiber tracts in multiple sclerosis patients. Neuroimage Clin 2015; 8: 110–116. doi: 10.1016/j.nicl.2015.03.003.
19. Keegan BM, Kaufmann TJ, Weinshenker BG et al. Progressive solitary sclerosis: gradual motor impairment from a single CNS demyelinating lesion. Neurology 2016; 87 (16): 1713–1719. doi: 10.1212/WNL.0000000000003235.
20. Burgetová A, Seidl Z, Vaněčková M et al. Magnetická rezonanční relaxometrie u roztroušené sklerózy – mě- ření T2 relaxačního času v centrální šedé hmotě. Cesk Slov Neurol N 2010; 73/106 (1): 26–31.
21. Trapp BD, Vignos M, Dudman J et al. Cortical neuronal densities and cerebral white matter demyelination in multiple sclerosis: a retrospective study. Lancet Neurol 2018; 17 (10): 870–884. doi: 10.1016/S1474-4422 (18) 30245-X.
22. Ruggieri S, Petracca M, De Giglio L et al. A matter of atrophy: differential impact of brain and spine damage on disability worsening in multiple sclerosis. J Neurol 2021; 268 (12): 4698–4706. doi: 10.1007/s00415-021-10576-9.
23. Tsagkas C, Magon S, Gaetano L et al. Spinal cord volume loss: a marker of disease progression in multiple sclerosis. Neurology 2018; 91 (4): e349–e358. doi: 10.1212/WNL.0000000000005853.
24. Schee JP, Viswanathan S. Pure spinal multiple sclerosis: a possible novel entity within the multiple sclerosis disease spektrum. Mult Scler 2019; 25 (8): 1189–1195. doi: 10.1177/1352458518775912.
25. Evangelou N, DeLuca GC, Owens T et al. Pathological study of spinal cord atrophy in multiple sclerosis suggests limited role of local lesions. Brain 2005; 128 (1): 29–34. doi: 10.1093/brain/awh323.
26. Lukas C, Sombekke MH, Bellenberg B et al. Relevance of spinal cord abnormalities to clinical disability in multiple sclerosis: MR imaging findings in a large cohort of patients. Radiology 2013; 269 (2): 542–552. doi: 10.1148/radiology.13122566.
27. Stankiewicz JM, Neema M, Alsop DC et al. Spinal cord lesions and clinical status in multiple sclerosis: a 1.5 T and 3 T MRI study. J Neurol Sci 2009; 279 (1–2): 99–105. doi: 10.1016/j.jns.2008.11.009.
28. Valsasina P, Aboulwafa M, Preziosa P et al. Cervical cord T1-weighted hypointense lesions at MR imaging in multiple sclerosis: relationship to cord atrophy and disability. Radiology 2018; 288 (1): 234–244. doi: 10.1148/radiol.2018172311.
29. Eden D, Gros C, Badji A et al. Spatial distribution of multiple sclerosis lesions in the cervical spinal cord. Brain 2019; 142 (3): 633–646. doi: 10.1093/brain/awy352.
30. Bonacchi R, Pagani E, Meani A et al. Clinical relevance of multiparametric MRI assessment of cervical cord damage in multiple sclerosis. Radiology 2020; 296 (3): 605–615. doi: 10.1148/radiol.2020200430.
31. Sandroff BM, Schwartz CE, DeLuca J. Measurement and maintenance of reserve in multiple sclerosis. J Neurol 2016; 263 (11): 2158–2169. doi: 10.1007/s00415-016-8104-5.
32. van Faals NL, Dekker I, Balk LJ et al. Clinico-radiological dissociation of disease activity in MS patients: frequency and clinical relevance. J Neurol 2020; 267 (11): 3287–3291. doi: 10.1007/s00415-020-09991-1.
33. Agosta F, Absinta M, Sormani MP et al. In vivo assessment of cervical cord damage in MS patients: a longitudinal diffusion tensor MRI study. Brain 2007; 130 (8): 2211–2219. doi: 10.1093/brain/awm110.
34. Coetzee T, Thompson AJ. Unified understanding of MS course is required for drug development. Nat Rev Neurol 2018; 14 (4): 191–192. doi: 10.1038/nrneurol.2017.184.
Štítky
Paediatric neurology Neurosurgery NeurologyČlánok vyšiel v časopise
Czech and Slovak Neurology and Neurosurgery
2021 Číslo 6
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Memantine Eases Daily Life for Patients and Caregivers
- Memantine in Dementia Therapy – Current Findings and Possible Future Applications
Najčítanejšie v tomto čísle
- Stiff -person syndrom
- Normotenzní hydrocefalus
- Synukleinopatie a jejich laboratorní biomarkery
- Perorální kladribin v léčbě roztroušené sklerózy – data z celostátního registru ReMuS®