#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Clinical significance of cytochrome P450 genetic polymorphism – part IV. Cytochrome P450 3A4 and 3A5


Authors: Jana Ďuricová;  Milan Grundmann
Authors place of work: Ústav klinické farmakologie Lékařské fakulty Ostravské univerzity a akultní nemocnice Ostrava
Published in the journal: Čes. slov. Farm., 2011; 60, 276-282
Category: Review Articles

Summary

The enzymes of cytochrome P450 3A subfamily are responsible for the metabolism of about 50% of commonly used drugs. High inter-individual variability in the activities of these enzymes has been described. The last fourth part of this review focuses on the influence of genetic polymorphism of CYP3A4 and CYP3A5 enzymes on drug effect.

Key words:
cytochrome P450 – genetic polymorphism – CYP3A


Zdroje

1. Schuetz J. D., Kauma S., Guzellian P. S.: Identification of the fetal liver cytochrome CYP3A7 in human endometrium and placenta. J. Clin. Invest. 1993; 92, 1018–1024.

2. Cotreau M. M., von Moltke L. L., Greenblatt D. J.: The influence of age and sex on the clearance of cytochrome P450 3A substrates. Clin. Pharmacokinet. 2005; 44, 33–60.

3. King B. P., Leathart J. B., Mutch E., Williams F. M., Daly A. K.: CYP3A5 phenotype–genotype correlations in a ritish population. J. Clin. Pharmacol. 2003; 55, 625–629.

4. García-Martín E., Martínez C., Pizzaro R. M., García-Gamito F. J., Gullsten H., Raunio H., Agúndez J. A.: CYP3A4 variant alleles in white individuals with low CYP3A4 enzyme activity. Clin. Pharmacol. Ther. 2002; 71, 196–204.

5. Westlind-Johnsson A., Hermann R., Huennemeyer A., Hauns B., Lahu G., Nassr N., Zech K., Ingelman-Sundberg M., von Richter O.: Identification and characterization of CYP3A4*20, a ovel rare CYP3A4 allele without functional activity. Clin. Pharmacol. Ther. 2006; 79, 339–349.

6. Huang W., Lin Y. S., McConn D. J., Calamia J. C., Totah R. A., Isoherranen N., Glodowski M., Thummel K. E.: Evidence of significant contribution from CYP3A5 to hepatic drug metabolism. Drug. Metab. Dispos. 2004; 32, 1434–1445.

7. van Schaik R. H., van der Heiden I. P., van den Anker J., Lindemans J.: CYP3A5 variant allele frequencies in Dutch Caucasians. Clin. Chem. 2002; 48, 1668–1671.

8. Daly A. K.: Significance of the minor cytochrome P450 3A isoforms. Clin. Pharmacokinet. 2006; 45, 13–31.

9. Min D. I., Ellingrod V. L.: Association of the CYP3A4*1B 5’-flanking region polymorphism with cyclosporine pharmacokinetics in healthy subjects. Ther. Drug. Monit. 2003; 25, 305–309.

10. Hesselink D. A., van Gelder T., van Schaik R. H., Balk A. H., van der Heiden I. P., van Dam T., van der Werf M., Weimar W., Mathot R. A.: Population pharmacokinetics of cyclosporine in kidney and heart transplant recipients and the influence of ethnicity and genetic polymorphisms in the MDR–1, CYP3A4, and CYP3A5 genes. Clin. Pharmacol. Ther. 2004; 76, 545–556.

11. Rivory L. P., Qin H., Clarke S. J., Eris J., Duggin G., Ray E., Trent R. J., Bishop J. F.: Frequency of cytochrome P450 3A4 variant genotype in transplant population and lack of association with cyclosporin clearance. Eur. J. Clin. Pharmacol. 2000; 56, 395–398.

12. von Ahsen N., Richter M., Grupp C., Ringe B., Oellerich M., Armstrong V. W.: No influence of the MDR–1 C3435T polymorphism or a CYP3A4 promoter polymorphism (CYP3A4-V allele) on dose-adjusted cyclosporin A trough concentrations or rejection incidence in stable renal transplant recipients. Clin. Chem. 2001; 47, 1048–1052.

13. Hesselink D. A., van Schaik R. H., van der Heiden I. P., van der Werf M., Gregoor P. J., Lindemans J., Weimar W., van Gelder T.: Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin. Pahrmacol. Ther. 2003; 74, 245–254.

14. Min D. I., Ellingrod V. L., Marsh S., McLeod H.: CYP3A5 polymorphism and the ethnic differences in cyclosporine pharmacokinetics in healthy subjects. Ther. Drug. Monit. 2004; 26, 524–528.

15. Qiu X. Y., Jiao Z., Zhang M., Zhong L. J., Liang H. Q., Ma C. L., Zhang L., Zhong M. K.: Association of MDR1, CYP3A4*18B, and CYP3A5*3 polymorphisms with cyclosporine pharmacokinetics in Chinese renal transplant recipients. Eur. J. Clin. Pharmacol. 2008; 64, 1069–1084.

16. Anglicheau D., Thervet E., Etienne I., Hurault De Ligny B., Le Meur Y., Touchard G., Büchler M., Laurent-Puig P., Tregouet D., Beaune P., Daly A., Legendre C., Marquet P.: CYP3A5 and MDR1 genetic polymorphisms and cyclosporine pharmacokinetics after renal transplantation. Clin. Pharmacol. Ther. 2004; 75, 422–433.

17. Fredericks S., Jorga A., MacPhee I. A., Reboux S., Shiferaw E., Moreton M., Carter N. D., Holt D. W., Johnston A.: Multi-drug resistance gene-1 (MDR-1) haplotypes and the CYP3A5*1 genotype have no influence on ciclosporin dose requirements as assessed by C0 or C2 measurements. Clin. Transplant. 2007; 21, 252–257.

18. Press R. R., Ploeger B. A., den Hartigh J., van der Straaten T., van Pelt H., Danhof M., de Fijter H., Guchelaar H. J.: Explaining variability in ciclosporin exposure in adult kidney transplant recipients. Eur. J. Clin. Pharmacol. 2010; 66, 579–590.

19. Zhao Y., Song M., Guan D., Bi S., Meng J., Li Q., Wang W.: Genetic polymorphisms of CYP3A5 genes and concentration of the cyclosporine and tacrolimus. Transplant. Proc. 2005; 37, 178–181.

20. Loh P. T., Lou H. X., Zhao Y., Chin Y. M., Vathsala A.: Significant impact of gene polymorphisms on tacrolimus but not cyclosporine dosing in Asian renal transplant recipients. Transplant. Proc. 2008; 40, 1690–1695.

21. Wang Y., Wang C., Li J., Zhu G., Chen X., Bi H., Huang M.: Effect of genetic polymorphisms of CYP3A5 and MDR1 on cyclosporine concentration during the early stage after renal transplantation in Chinese patients co-treated with diltiazem. Eur. J. Clin. Pharmacol. 2009; 65, 239–247.

22. Chu X. M., Hao H. P., Wang G. J., Guo L. Q., Min P. Q.: Influence of CYP3A5 genetic polymorphism on cyclosporine A metabolism and elimination in Chinese renal transplant recipients. Acta. Pharmacol. Sin. 2006; 27, 1504–1508.

23. Yates C. R., Zhang W., Song P., Li S., Gaber A. O., Kotb M., Honaker M. R., Alloway R. R., Meibohm B.: The effect of CYP3A5 and MDR1 polymorphic expression on cyclosporine oral disposition in renal transplant patients. J. Clin. Pharmacol. 2003; 43, 555–564.

24. Fukushima-Uesaka H., Saito Y., Watanabe H., Shiseki K., Saeki M., Nakamura T., Kurose K., Sai K., Komamura K., Ueno K., Kamakura S., Kitakaze M., Hanai S., Nakajima T., Matsumoto K., Saito H., Goto Y., Kimura H., Katoh M., Sugai K., Minami N., Shirao K., Tamura T., Yamamoto N., Minami H., Ohtsu A., Yoshida T., Saijo N., Kitamura Y., Kamatani N., Ozawa S., Sawada J.: Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population. Hum. Mutat. 2004; 23, 1–5.

25. Hu Y. F., Tu J. H., Tan Z. R., Liu Z. Q., Zhou G., He J., Wang D., Zhou H. H.: Association of CYP3A4*18B polymorphisms with the pharmacokinetics of cyclosporine in healthy subjects. Xenobiotica. 2007; 37, 315–327.

26. Zeng Y., He Y. J., He F. Y., Fan L., Zhou H. H.: Effect of bifendate on the pharmacokinetics of cyclosporine in relation to the CYP3A4*18B genotype in healthy subjects. Acta. Pharmacol. Sin. 2009; 30, 478–484.

27. Grinyó J., Vanrenterghem Y., Nashan B., Vincenti F., Ekberg H., Lindpaintner K., Rashford M., Nasmyth-Miller C., Voulgari A., Spleiss O., Truman M., Essioux L.: Association of four DNA polymorphisms with acute rejection after kidney transplantation. Transpl. Int. 2008; 21, 879–891.

28. Klauke B., Wirth A., Zittermann A., Bohms B., Tenderich G., Körfer R., Milting H.: No association between single nucleotide polymorphisms and the development of nephrotoxicity after orthotopic heart transplantation. J. Heart. Lung. Transplant. 2008; 27, 741–745.

29. Kreutz R., Bolbrinker J., van der Sman-de Beer F., Boeschoten E. W., Dekker F. W., Kain S., Martus P., Sietmann A., Friedrichs F., Stoll M., Offermann G., Beige J.: CYP3A5 genotype is associated with longer patient survival after kidney transplantation and long–term treatment with cyclosporine. Pharmacogenomics. J. 2008; 8, 416–422.

30. Op den Buijsch R. A., Christiaans M. H., Stolk L. M., de Vries J. E., Cheung C. Y., Undre N. A., van Hooff J. P., van Dieijen-Visser M. P.: Tacrolimus pharmacokinetics and pharmacogenetics: influence of adenosine triphosphate–binding cassette B1 (ABCB1) and cytochrome (CYP) 3A polymorphisms. Fundam. Clin. Pharmacol. 2007; 21, 427–435.

31. Macphee I. A., Fredericks S., Tai T., Syrris P., Carter N. D., Johnston A., Goldberg L., Holt D. W.: Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome p4503A5 and P-glycoprotein correlate with dose requirement. Transplantation. 2002; 74, 1486–1489.

32. Zheng H., Webber S., Zeevi A., Schuetz E., Zhang J., Bowman P., Boyle G., Law Y., Miller S., Lamba J., Burckart G. J.: Tacrolimus dosing in pediatric heart transplant patients is related to CYP3A5 and MDR1 gene polymorphisms. Am. J. Transplant. 2003; 3, 477–483.

33. Thervet E., Anglicheau D., King B., Schlageter M. H., Cassinat B., Beaune P., Legendre C., Daly A. K.: Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation. 2003; 76, 1233–1235.

34. Zheng H., Zeevi A., Schuetz E., Lamba J., McCurry K., Griffith B. P., Webber S., Ristich J., Dauber J., Iacono A., Grgurich W., Zaldonis D., McDade K., Zhang J., Burckart G. J.: Tacrolimus dosing in adult lung transplant patients is related to cytochrome P4503A5 gene polymorphism. J. Clin. Pharmacol. 2004; 44, 135–140.

35. Yu S., Wu L., Jin J., Yan S., Jiang G., Xie H., Zheng S.: Influence of CYP3A5 gene polymorphisms of donor rather than recipient to tacrolimus individual dose requirement in liver transplantation. Transplantation. 2006; 81, 46–51.

36. Katsakiori P. F., Papapetrou E. P., Sakellaropoulos G. C., Goumenos D. S., Nikiforidis G. C., Flordellis C. S.: Factors affecting the long–term response to tacrolimus in renal transplant patients: pharmacokinetic and pharmacogenetic approach. Int. J. Med. Sci. 2010; 7, 94–100.

37. MacPhee I. A., Fredericks S., Tai T., Syrris P., Carter N. D., Johnston A., Goldberg L., Holt D. W.: The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. Am. J. Transplant. 2004; 4, 914–919.

38. Zhang X., Liu Z. H., Zheng J. M., Chen Z. H., Tang Z., Chen J. S., Li L. S.: Influence of CYP3A5 and MDR1 polymorphisms on tacrolimus concentration in the early stage after renal transplantation. Clin. Transplant. 2005; 19, 638–643.

39. Hesselink D. A., van Schaik R. H., van Agteren M., de Fijter J. W., Hartmann A., Zeier M., Budde K., Kuypers D. R., Pisarski P., Le Meur Y., Mamelok R. D., van Gelder T.: CYP3A5 genotype is not associated with a higher risk of acute rejection in tacrolimus-treated renal transplant recipients. Pharmacogenet. Genomics. 2008; 18, 339–348.

40. Roy J. N., Barama A., Poirier C., Vinet B., Roger M.: Cyp3A4, Cyp3A5, and MDR–1 genetic influences on tacrolimus pharmacokinetics in renal transplant recipients. Pharmacogenet. Genomics. 2006; 16, 659–665.

41. Zheng H. X., Zeevi A., McCurry K., Schuetz E., Webber S., Ristich J., Zhang J., Iacono A., Dauber J., McDade K., Zaldonis D., Lamba J., Burckart G. J.: The impact of pharmacogenomic factors on acute persistent rejection in adult lung transplant patients. Transpl. Immunol. 2005; 14, 37–42.

42. Ferraresso M., Tirelli A., Ghio L., Grillo P., Martina V., Torresani E., Edefonti A.: Influence of the CYP3A5 genotype on tacrolimus pharmacokinetics and pharmacodynamics in young kidney transplant recipients. Pediatr. Transplant. 2007; 11, 296–300.

43. Quteineh L., Verstuyft C., Furlan V., Durrbach A., Letierce A., Ferlicot S., Taburet A. M., Charpentier B., Becquemont L.: Influence of CYP3A5 genetic polymorphism on tacrolimus daily dose requirements and acute rejection in renal graft recipients. Basic. Clin. Pharmacol. Toxicol. 2008; 103, 546–552.

44. Fukudo M., Yano I., Yoshimura A., Masuda S., Uesugi M., Hosohata K., Katsura T., Ogura Y., Oike F., Takada Y., Uemoto S., Inui K.: Impact of MDR1 and CYP3A5 on the oral clearance of tacrolimus and tacrolimus-related renal dysfunction in adult living-donor liver transplant patients. Pharmacogenet. Genomics. 2008; 18, 413–423.

45. Kuypers D. R., de Jonge H., Naesens M., Lerut E., Verbeke K., Vanrenterghem Y.: CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients. Clin. Pharmacol. Ther. 2007; 82, 711–725.

46. Woodahl E. L., Hingorani S. R., Wang J., Guthrie K. A., McDonald G. B., Batchelder A., Li M., Schoch H. G., McCune J. S.: Pharmacogenomic associations in ABCB1 and CYP3A5 with acute kidney injury and chronic kidney disease after myeloablative hematopoietic cell transplantation. Pharmacogenomics. J. 2008; 8, 248–255.

47. Anglicheau D., Le Corre D., Lechaton S., Laurent-Puig P., Kreis H., Beaune P., Legendre C., Thervet E.: Consequences of genetic polymorphisms for sirolimus requirements after renal transplant in patients on primary sirolimus therapy. Am. J. Transplant. 2005; 5, 595–603.

48. Djebli N., Rousseau A., Hoizey G., Rerolle J. P., Toupance O., Le Meur Y., Marquet P.: Sirolimus population pharmacokinetic/pharmacogenetic analysis and bayesian modelling in kidney transplant recipients. Clin. Pharmacokinet. 2006; 45, 1135–1148.

49. Le Meur Y., Djebli N., Szelag J. C., Hoizey G., Toupance O., Rérolle J.P., Marquet P.: CYP3A5*3 influences sirolimus oral clearance in de novo and stable renal transplant recipients. Clin. Pharmacol. Ther. 2006; 80, 51–60.

50. Miao L. Y., Huang C. R., Hou J. Q., Qian M. Y.: Association study of ABCB1 and CYP3A5 gene polymorphisms with sirolimus trough concentration and dose requirements in Chinese renal transplant recipients. Biopharm. Drug. Dispos. 2008; 29, 1–5.

51. Lukas J. C., Calvo R., Zografidis A., Ortega I., Suárez E.: Simulation of sirolimus exposures and population variability immediately post renal transplantation: importance of the patient‘s CYP3A5 genotype in tailoring treatment. Biopharm. Drug. Dispos. 2010; 31, 129–137.

52. Mourad M., Mourad G., Wallemacq P., Garrigue V., Van Bellingen C., van Kerckhove V., De Meyer M., Malaise J., Eddour D. C., Lison D., Squifflet J. P., Haufroid V.: Sirolimus and tacrolimus trough concentrations and dose requirements after kidney transplantation in relation to CYP3A5 and MDR1 polymorphisms and steroids. Transplantation 2005; 80, 977–984.

53. Wandel C., Böcker R., Böhrer H., Browne A., Rügheimer E., Martin E.: Midazolam is metabolized by at least three different cytochrome P450 enzymes. Br. J. Anaesth. 1994; 73, 658–661.

54. Kuehl P., Zhang J., Lin Y., Lamba J., Assem M., Schuetz J., Watkins P. B., Daly A., Wrighton S. A., Hall S. D., Maurel P., Relling M., Brimer C., Yasuda K., Venkataramanan R., Strom S., Thummel K., Boguski M.S., Schuetz E.: Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet. 2001; 27, 383–391.

55. Lin Y. S., Dowling A. L., Quigley S. D., Farin F. M., Zhang J., Lamba J., Schuetz E. G., Thummel K. E.: Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol. Pharmacol. 2002; 62, 162–172.

56. Goh B. C., Lee S. C., Wang L. Z., Fan L., Guo J. Y., Lamba J., Schuetz E., Lim R., Lim H. L., Ong A. B., Lee H. S.: Explaining interindividual variability of docetaxel pharmacokinetics and pharmacodynamics in Asians through phenotyping and genotyping strategies. J. Clin. Oncol. 2002; 20, 3683–3690.

57. Wong M., Balleine R. L., Collins M., Liddle C., Clarke C. L., Gurney H.: CYP3A5 genotype and midazolam clearance in Australian patients receiving chemotherapy. Clin. Pharmacol. Ther. 2004; 75, 529–538.

58. Shih P. S., Huang J. D.: Pharmacokinetics of midazolam and 1’-hydroxymidazolam in Chinese with different CYP3A5 genotypes. Drug. Metab. Dispos. 2002; 30, 1491–1496.

59. Eap C. B., Buclin T., Hustert E., Bleiber G., Golay K. P., Aubert A. C., Baumann P., Telenti A., Kerb R.: Pharmacokinetics of midazolam in CYP3A4- and CYP3A5-genotyped subjects. Eur. J. Clin. Pharmacol. 2004; 60, 231–236.

60. Tomalik-Scharte D., Doroshyenko O., Kirchheiner J., Jetter A., Lazar A., Klaassen T., Frank D., Wyen C., Fätkenheuer G., Fuhr U.: No role for the CYP3A5*3 polymorphism in intestinal and hepatic metabolism of midazolam. Eur. J. Clin. Pharmacol. 2008; 64, 1033–1035.

61. Miao J., Jin Y., Marunde R. L., Kim S., Quinney S., Radovich M., Li L., Hall S. D.: Association of genotypes of the CYP3A cluster with midazolam disposition in vivo. Pharmacogenomics. J. 2009; 9, 319–326.

62. Fromm M. F., Schwilden H., Bachmakov I., König J., Bremer F., Schüttler J.: Impact of the CYP3A5 genotype on midazolam pharmacokinetics and pharmacodynamics during intensive care sedation. Eur. J. Clin. Pharmacol. 2007; 63, 1129–1133.

63. Hirota N., Ito K., Iwatsubo T., Green C. E., Tyson C. A., Shimada N., Suzuki H., Sugiyama Y.: In vitro/in vivo scaling of alprazolam metabolism by CYP3A4 and CYP3A5 in humans. Biopharm. Drug. Dispos. 2001; 22, 53–71.

64. Park J. Y., Kim K. A., Park P. W., Lee O. J., Kang D. K., Shon J. H., Liu K. H., Shin J. G.: Effect of CYP3A5*3 genotype on the pharmacokinetics and pharmacodynamics of alprazolam in healthy subjects. Clin. Pharmacol. Ther. 2006; 79, 590–599.

65. Kim K. A., Park P. W., Lee O. J., Kang D. K., Park J. Y.: Effect of polymorphic CYP3A5 genotype on the single–dose simvastatin pharmacokinetics in healthy subjects. J. Clin. Pharmacol. 2007; 47, 87–93.

66. Kivistö K. T., Niemi M., Schaeffeler E., Pitkälä K., Tilvis R., Fromm M. F., Schwab M., Eichelbaum M., Strandberg T.: Lipid-lowering response to statines is affected by CYP3A5 polymorphism. Pharmacogenetics 2004; 14, 523–525.

67. Fiegenbaum M., da Silveira F. R., Van der Sand C. R., Van der Sand L. C., Ferreira M. E., Pires R. C., Hutz M. H.: The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastatin treatment. Clin. Pharmacol. The.r 2005; 78, 551–558.

68. Willrich M. A., Hirata M. H., Genvigir F. D., Arazi S. S., Rebecchi I. M., Rodrigues A. C., Bernik M. M., Dorea E. L., Bertolami M. C., Faludi A. A., Hirata R. D.: CYP3A53A allele is associated with reduced lowering-lipid response to atorvastatin in individuals with hypercholesterolemia. Clin. Chim. Acta. 2008; 398,15–20.

69. Kajinami K., Brousseau M. E., Ordovas J. M., Schaefer E. J.: CYP3A4 genotypes and plasma lipoprotein levels before and after treatment with atorvastatin in primary hypercholesterolemia. Am. J. Cardiol. 2004; 93, 104–107.

70. Wilke R. A., Moore J. H., Burmester J. K.: Relative impact of CYP3A genotype and concomitant medication on the severity of atorvastatin-induced muscle damage. Pharmacogenet. Genomics. 2005; 15, 415–421.

71. Fröhlich M., Hoffmann M. M., Burhenne J., Mikus G., Weiss J., Haefeli W. E.: Association of the CYP3A5 A6986G (CYP3A5*3) polymorphism with saquinavir pharmacokinetics. Br. J. Clin. Pharmacol. 2004; 58, 443–444.

72. Mouly S. J., Matheny C., Paine M. F., Smith G., Lamba J., Lamba V., Pusek S. N., Schuetz E. G., Stewart P. W., Watkins P. B.: Variation in oral clearance of saquinavir is predicted by CYP3A5*1 genotype but not by enterocyte content of cytochrome P450 3A5. Clin. Pharmacol. Ther. 2005; 78, 605–618.

73. Josephson F., Allqvist A., Janabi M., Sayi J., Aklillu E., Jande M., Mahindi M., Burhenne J., Bottiger Y., Gustafsson L. L., Haefeli W. E., Bertilsson L.: CYP3A5 genotype has an impact on the metabolism of the HIV protease inhibitor saquinavir. Clin. Pharmacol. Ther. 2007; 81, 708–712.

74. Solas C., Simon N., Drogoul M. P., Quaranta S., Frixon-Marin V., Bourgarel-Rey V., Brunet C., Gastaut J. A., Durand A., Lacarelle B., Poizot-Martin I.: Minimal effect of MDR1 and CYP3A5 genetic polymorphisms on the pharmacokinetics of indinavir in HIV–infected patients. Br. J. Clin. Pharmacol. 2007; 64, 353–362.

75. Bertrand J., Treluyer J. M., Panhard X., Tran A., Auleley S., Rey E., Salmon-Céron D., Duval X., Mentré F.; COPHAR2-ANRS 111 Study Group: Influence of pharmacogenetics on indinavir disposition and short-term response in HIV patients initiating HAART. Eur. J. Clin. Pharmacol. 2009; 65, 667–678.

76. Anderson P. L., Lamba J., Aquilante C. L., Schuetz E., Fletcher C. V.: Pharmacogenetic characteristics of indinavir, zidovudine, and lamivudine therapy in HIV--infected adults: a pilot study. J. Acquir. Immune. Defic. Syndr. 2006; 42, 441–449.

77. Anderson P. L., Aquilante C. L., Gardner E. M., Predhomme J., McDaneld P., Bushman L. R., Zheng J. H., Ray M., MaWhinney S.: Atazanavir pharmacokinetics in genetically determined CYP3A5 expressors versus non-expressors. J. Antimicrob. Chemother. 2009; 64, 1071–1079.

78. P450 Drug Interaction Table. http://medicine.iupui.edu/ clinpharm/ddis/table.aspx (17. 5. 2011)

79. Suchopár, J., Buršík, J., Mach, R., Prokeš, M.: Kompendium lékových interakcí. 1. vyd. InfoPharm 2005.

80. Baxter, K., Davis, M., Driver, S. (eds.) Stockleyęs drug interactions, 8th ed. Suffolk. Pharmaceuticals Press 2008.

Štítky
Pharmacy Clinical pharmacology
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#