#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Nanočásticové systémy uvolňující léčivo při změně teploty


Nanočásticové systémy uvolňující léčivo při změně teploty

Lékové transportní systémy reagující na vnější podněty jsou schopné uvolnit léčivou látku požadovaným řízeným způsobem v závislosti na spouštěcím mechanismu. Spouštěcí mechanismus může být fyzikální, chemické nebo biologické povahy. Termoresponzivní lékové transportní systémy odpovídají na změnu teploty a byly navrženy zejména k léčbě rakoviny metodou využívající působení zvýšené teploty, tj. hypertermii. Termoresponzivní systémy lze rozdělit do několika skupin, např. termoresponzivní hydrogelové polymerní systémy, lipozomy, nano- nebo mikročástice a polypeptidové konjugáty s léčivem. Zatímco lipozomy jsou citlivé na zvýšení teploty již svým složením, ostatní systémy jsou obvykle založené na termosenzitivních polymerech, zejména poly-(N-izopropyl-akrylamidu). Tento článek shrnuje poslední dostupné informace týkající se cíleného uvolňování léčiv v závislosti na změně teploty.

Klíčová slova:
lékový transportní systémtermoresponzivní systémpoly-(N-izopropyl-akrylamid)lipozomnanočásticepeptidový konjugát s léčivem


Autoři: Miloslava Rabišková;  Eva Koziolová;  Johana Jirásková
Působiště autorů: Faculty of Pharmacy, Charles University in Prague ;  Department of Pharmaceutical Technology
Vyšlo v časopise: Čes. slov. Farm., 2014; 63, 239-247
Kategorie: Review Articles

Souhrn

Lékové transportní systémy reagující na vnější podněty jsou schopné uvolnit léčivou látku požadovaným řízeným způsobem v závislosti na spouštěcím mechanismu. Spouštěcí mechanismus může být fyzikální, chemické nebo biologické povahy. Termoresponzivní lékové transportní systémy odpovídají na změnu teploty a byly navrženy zejména k léčbě rakoviny metodou využívající působení zvýšené teploty, tj. hypertermii. Termoresponzivní systémy lze rozdělit do několika skupin, např. termoresponzivní hydrogelové polymerní systémy, lipozomy, nano- nebo mikročástice a polypeptidové konjugáty s léčivem. Zatímco lipozomy jsou citlivé na zvýšení teploty již svým složením, ostatní systémy jsou obvykle založené na termosenzitivních polymerech, zejména poly-(N-izopropyl-akrylamidu). Tento článek shrnuje poslední dostupné informace týkající se cíleného uvolňování léčiv v závislosti na změně teploty.

Klíčová slova:
lékový transportní systémtermoresponzivní systémpoly-(N-izopropyl-akrylamid)lipozomnanočásticepeptidový konjugát s léčivem


Zdroje

1. Rabišková M., Fričová V. Perorální lékové formy s řízeným uvolňováním léčiv. Prakt. lékáren. 2008; 4, 212–216.

2. Dostálová M., Rabišková M. Mukoadhezivní orální tablety – moderní léková forma s řízeným uvolňováním léčiva. Čes. slov. Farm. 2000; 49, 55–61.

3. Rabišková M. Moderní lékové formy pro orální a perorální aplikaci. Bratislava: Farmaceutická fakulta Univerzity Komenského 2009.

4. Dvořáčková K., Rabišková M. Vaginální aplikace léčiv – nové směry. Praktické lékárenství 2006; 2, 93–97.

5. Bautzová T., Rabišková M., Lamprecht A. Multiparticulate systems containing 5-ASA for the treatment of inflammatory bowel disease. Drug Dev. Ind. Pharm. 2011; 37, 1100–1109.

6. Rabišková M. Nanočástice pro lékové formy. Remedia 2007; 17, 495–501.

7. Roy D., Cambre J. N., Sumerlin B. S. Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci. 2010; 35, 278–301.

8. Gupta P., Vermani K., Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today 2002; 7, 569–579.

9. Fleige E., Quadir M. A., Haag R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Adv. Drug Deliv. Rev. 2012; 64, 866–884.

10. Engin K. Biological rationale and clinical experience with hyperthermia. Control. Clin. Trials 1996; 17, 316–342.

11. Wust P., Hildebrand B., Sreenivasa G. Hyperthermia in combined treatment of cancer. Lancet Oncology 2002; 3, 487–497.

12. Gaber M. H., Wu N. Z., Hong K. L. Thermosensitive liposomes: Extravasation and release of contents in tumor microvascular networks. Int. J. Radiat. Oncol. 1996; 36, 1177–1187.

13. Meyer D. E., Shin B. C., Kong H. A. Drug targeting using thermally responsive polymers and local hyperthermia. J. Control. Rel. 2001; 74, 213–224.

14. Ganta S., Devalapally H., Shahiwala A. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Rel. 2008; 126, 187–204.

15. Maeda H., Wu J., Sawa T. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Rel. 2000; 65, 271–284.

16. Nakayama M., Okano T. Multi-targeting cancer chemotherapy using temperature-responsive drug carrier systems. React. Funct. Polym. 2011; 71, 235–244.

17. Li L., Ten Hagen T. L., Bolkestein M. Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia. J. Control. Rel. 2013; 167, 130–137.

18. Harrington K. J., Mohammadtaghi S., Uster P. S. Effective targeting of solid tumors in patients with locally advanced cancer by radiolabeled pegylated liposomes. Clin. Cancer Res. 2001; 7, 243–254.

19. Li L., Ten Hagen T. L., Haeri A. A novel two-step mild hyperthermia for advanced liposomal chemotherapy. J. Control. Rel. 2014; 174, 202–208.

20. Dicheva B. M., Koning G. A. Targeted thermosensitive liposomes: an attractive novel approach for increased drug delivery of solid tumors. Expert Opin. Drug Deliv. 2014; 11, 83–100.

21. Marsh D. General features of phospholipid phase transitions. Chemistry and Physics of Lipids 1991; 57, 109–120.

22. Klouda L., Mikos A. G. Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm. 2008; 68, 34–45.

23. Bromberg L. E., Ron E. S. Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv. Drug Deliv. Rev. 1998; 31, 197–221.

24. Abulateefeh S. R., Samer R., Spain A. G. Thermoresponsive polymer colloids for drug delivery and cancer therapy. Macromol. Biosci. 2011; 11, 1722–1734.

25. Curcio M., Spizzimi U. G., Iemma F. Grafted thermo-responsive gelatin microspheres as delivery systems in triggered drug release. Eur. J. Pharm. Biopharm. 2010; 76, 48–55.

26. Yoshida R., Sakai K., Okano T. Drug release profiles in the shrinking process of thermoresponsive poly(N-isopropylacrylamide-co-alkyl methacrylate) gels. Ind. Eng. Chem. Res. 1992; 31, 2339–2345.

27. Yoshino K., Kadowaki A., Takagishi T. Temperature sensitization of liposomes by use of N-isopropylacrylamide copolymers with varying transition endotherms. Bioconjugate Chem. 2004; 15, 1102–1109.

28. Chu L. Y., Park S. H., Yamaguchi T. Preparation of thermo-responsive core-shell microcapsules with a porous membrane and poly(N-isopropylacrylamide) gates. J. Membrane Sci. 2001; 192, 27–39.

29. Rabišková M. Využití nanočásticových systémů v medicíně. Remedia 2008; 18, 89–97.

30. Yoshida R., Uchida K. Kaneko Y. Comb-type grafted hydrogels with rapid de-swelling response to temperature-changes. Nature 1995; 374, 240–242.

31. Kaneko Y., Nakamura S., Sakai K. Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains. Macromolecules 1998; 31, 6099–6105.

32. Bae Y. H., Okano T., Kim, S. W. On/off thermocontrol of solute transport. 1. Temperature-dependence of swelling of N-isopropylacrylamide networks modified with hydrophobic components in water. Pharm. Res. 1991; 8, 531–537.

33. Okuyama Y., Yoshida R., Sakai K. Swelling controlled zero order and sigmoidal drug release from thermo-responsive poly(N-isopropylacrylamide-co-butyl methacrylate) hydrogel. J. Biomater. Sci. 1993; 4, 545–556.

34. Kaneko Y., Sakai K., Kikuchi A. Fast swelling/deswelling kinetics of comb-type grafted poly(N-isopropylacrylamide) hydrogels. Macromolecular Symposia 1996; 109, 41–53.

35. Oh K. S., Han S. K., Choi Y. W. Hydrogen-bonded polymer gel and its application as a temperature-sensitive drug delivery system. Biomaterials 2004; 25, 2393–2398.

36. Shaw A. W., Mclean M. A., Sligar S. G. Phospholipid phase transitions in homogeneous nanometer scale bilayer discs. FEBS Letters 2004; 556, 260–264.

37. Yatvin M., Weinstein J. N. Dennis W. H. Design of liposomes for enhanced local release of drugs by hyperthermia. Science 1978; 202, 1290–1293.

38. Weinstein J., Magin R. L., Yatvin M. Liposomes and local hyperthermia: selective delivery of methotrexate to heated tumors. Science 1979; 204, 188–191.

39. Needham D., Anyarambhatla G., Kong G. A new temperature-sensitive liposome for use with mild hyperthermia: Characterization and testing in a human tumor xenograft model. Cancer Res. 2000; 60, 1197–1201.

40. Kneidl B., Peller M., Winter G. Thermosensitive liposomal drug delivery systems: state of the art review. Int. J. Nanomed. 2014; 9, 4387–4398.

41. Landon C. D., Park J. Y., Needham D. Nanoscale drug delivery and hyperthermia: the materials design and preclinical and clinical testing of low temperature-sensitive liposomes used in combination with mild hyperthermia in the treatment of local cancer. Open Nanomed. J. 2011; 3, 38–64.

42. Phase 3 Study of ThermoDox with radiofrequency ablation (RFA) in treatment of hepatocellular carcinoma (HCC) [online]. CLINICALTRIALS.GOV, 2014-11-16 [cited 2014 11–16]. Available from: http://www.clinicaltrials.gov/ct2/show/ NCT00617981?term=ThermoDox&rank=3.

43. Lindner L. H., Eichhorn M. E., Eibl H. Novel temperature-sensitive liposomes with prolonged circulation time. Clin. Cancer Res. 2004; 10, 2168–2178.

44. Li, L. Triggered content release from optimized stealth thermosensitive liposomes using mild hyperthermia. J. Control. Rel. 2010; 143, 274–279.

45. Tagami T., Ernsting M. J., Li S.-D. Efficient tumor regression by a single and low dose treatment with a novel and enhanced formulation of thermosensitive liposomal doxorubicin. J. Control. Rel. 2011; 152, 303–309.

46. Kono K. Thermosensitive polymer-modified liposomes. Adv. Drug Deliv. Rev. 2001; 53, 307–319.

47. Fletcher P. D. Self-assembly of micelles and microemulsions. Cur. Opin. Colloid Interface Sci. 1996; 1, 101–106.

48. Kwon G. S., Kataoka, K. Block-copolymer micelles as long-circulating drug vehicles. Adv. Drug Deliv. Rev. 1995; 16, 295–309.

49. Gaucher G., Dufresne M. H., Sant V. P. Block copolymer micelles: preparation, characterization and application in drug delivery. J. Control. Rel. 2005; 109, 169–188.

50. Neradovic D., Soga O., Van Nostrum C. S. The effect of the processing and formulation parameters on the size of nanoparticles based on block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) with and without hydrolytically sensitive groups. Biomaterials 2004; 25, 2409–2418.

51. Chung J. E., Yokoyama M., Okano T. Inner core segment design for drug delivery control of thermo-responsive polymeric micelles. J. Control. Rel. 2000; 65, 93–103.

52. Nakayama M., Chung J. E., Miyazaki T. Thermal modulation of intracellular drug distribution using thermoresponsive polymeric micelles. React. Funct. Polym. 2007; 67, 1398–1407.

53. Kohori F., Sakai K., Aoyagi T. Control of adriamycin cytotoxic activity using thermally responsive polymeric micelles composed of poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)- -b-poly(d,l-lactide). Colloids and Surfaces B: Biointerfaces 1999; 16, 195–205.

54. Kohori F., Yokoyama M., Sakai K. Process design for efficient and controlled drug incorporation into polymeric micelle carrier systems. J. Control. Rel. 2002; 78, 155–163.

55. Nakayama M., Okano T., Miyazaki T. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J. Control. Rel. 2006; 115, 46–56.

56. Qin S., Geng Y., Discher D. E. Temperature-controlled assembly and release from polymer vesicles of poly(ethylene oxide)-block-poly(N-isopropylacrylamide). Adv. Mater. 2006; 18, 2905–2909.

57. Zhao Y., Fan X., Liu D. PEGylated thermo-sensitive poly(amidoamine) dendritic drug delivery systems. Int. J. Pharm. 2011; 409, 229–236.

58. Urry D. W. Entropic elastic processes in protein mechanisms. I. Elastic structure due to an inverse temperature transition and elasticity due to internal chain dynamics. J. Protein Chem. 1988; 7, 1–34.

59. Meyer D. E., Chilkoti A. Quantification of the effects of chain length and concentration on the thermal behavior of elastin-like polypeptides. Biomacromolecules 2004; 5, 846–851.

60. Bidwell G. L., Davis A. N., Fokt I. A thermally targeted elastin-like polypeptide-doxorubicin conjugate overcomes drug resistance. Invest. New Drug. 2007; 25, 313–326.

61. Bidwell G. L., Raucher D. Application of thermally responsive polypeptides directed against c-Myc transcriptional function for cancer therapy. Mol. Cancer Ther. 2005; 4, 1076–1085.

62. Massodi I., Bidwell G. L., Davis A. N. Inhibition of ovarian cancer cell metastasis by a fusion polypeptide Tat-ELP. Clin. Exper. Metastasis 2009; 26, 251–260.

63. Massodi I., Moktan S., Rawat A. Inhibition of ovarian cancer cell proliferation by a cell cycle inhibitory peptide fused to a thermally responsive polypeptide carrier. Int. J. Cancer 2010; 126, 533–544.

64. Meyer D. E., Kong G. A., Dewhirst M. W. Targeting a genetically engineered elastin-like polypeptide to solid tumors by local hyperthermia. Cancer Res. 2001; 61, 1548–1554.

65. Chilkoti A., Dreher M. R., Meyer D. E. Design of thermally responsive, recombinant polypeptide carriers for targeted drug delivery. Adv. Drug Deliv. Rev. 2002; 54, 1093–1111.

66. Meyer D. E., Shin, S. C., Kong G. A. Drug targeting using thermally responsive polymers and local hyperthermia. J. Control. Rel. 2001; 74, 213–224.

67. Chilkoti A., Dreher M. R., Meyer D. E. Targeted drug delivery by thermally responsive polymers. Adv. Drug Deliv. Rev. 2002; 54, 613–630.

Štítky
Pharmacy Clinical pharmacology
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#