#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Determination of flavonoids in natural materials with HPLC


Authors: Jarmila Krňanová;  Jozef Lehotay;  Jozef Čižmárik
Published in the journal: Čes. slov. Farm., 2015; 64, 119-125
Category: Review Articles

Summary

The paper reviews recent developments in the determination of flavonoids with HPLC. Flavonoids are a group of polyphenolic compounds commonly found in plants. Sample preparation is a very important step in the analytical procedure. The basic concept of a sample preparation method is to convert a real matrix into a sample in a format that is suitable for analysis by separation or analytical technique. In the present paper, attention was focused on the applications of molecularly imprinted polymers, especially on their utilization as selective sorbents in solid-phase extraction in the determination of flavonoids.

Key words:
flavonoids • hydrolysis • high performance liquid chromatography • molecularly imprinted polymers


Zdroje

1. Ďuračková Z. Voľné radikály a antioxidanty v medicíne (I), (Definícia, rozdelenie a biologický význam voľných radikálov a antioxidantov). Bratislava: Slovak Academic Press 1988.

2. Harborne J. B. The Flavonoids. London: Chapman and Hall 1994.

3. Kühnau J. The Flavonoids. A class of semi-essential food components: Their role in human nutrition. World Rev Nutr Diet. 1976; 24, 117–120.

4. Mojžiš J., Mojžišová G. Flavonoidy a ich biologické účinky. Košice: Vienala 2001.

5. Bielicka-Daszkiewicz K., Voelkel A. Theoretical and experimental methods of determination of the breakthrough volume of SPE sorbents. Talanta 2009; 80, 614–621.

6. Stevenson D. Molecular imprinted polymers for solid-phase extraction. Trends Anal. Chem. 1999; 18, 154–158.

7. Winkel-Schirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology 2001; 26, 485–493.

8. Ďuračková Z., Bergendi Ľ., Čársky J. Voľné radikály a antoixidanty v medicíne, (II).( Význam voľných radikálov v etiológii niektorých ochorení). Bratislava: Slovak Academic Press 1999.

9. Häkkinen S. Flavonols and Phenolic Acids in Berries and Berry Products. Kuopio: University of Kuopio 2000.

10. Crozier A., Jensen E., Lean M. E. J., Mcdonald M. S. Quantitative analysis of flavonoids by reversed-phase high performance liquid chromatography. J. Chromatogr. A 1997; 761, 315–321.

11. Segawa S., Yasui K., Takata Y., Kurihara T., Kaneda H., Watari J. Flavonoid Glycosides Extracted from Hop (Humulus lupulus L.) as Inhibitors of Chemical Mediator Release from Human Basophilic KU812 Cells. Biosci. Biotechnol. Biochem. 2006; 70, 2990–2997.

12. Nuutila A.M., Kammiovirta K., Oksman-Caldentey K. M. Comparison of methods for the hydrolysis of flavonoids and phenolic acids from onion and spinach for HPLC analysis. Food Chem. 2002; 76, 519–526.

13. Hao CH., Yuegang Z., Yiwei D. Separation and determination of flavonoids and other phenolic compounds in cranberry juice by high-performance liquid chromatography. J. Chromatogr. A 2001; 913, 387–395.

14. Proestos C., Boziaris I. S., Nychas G. J. E., Komaitis M. Analysis of flavonoids and phenolic acids in Greek aromatic plants: investigation of their antioxidant capacity and antimicrobial activity. Food Chem. 2006; 95, 664–671.

15. Biesaga M., Pyrzynska K. Liquid Chromatography/Tandem Mass Spectrometry Studies of the Phenolic Compounds in Honey. J. Chromatogr. A 2009; 1216, 6620–6626.

16. Stalikas C. D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 2007; 30, 3268–3295.

17. Andersen Ø. M., Markham, K. R. Flavonoids: chemistry, biochemistry and applications. New York: CRC Press 2006.

18. Nardini M., Ghiselli A. Determination of free and bound phenolic acids in beer. Food Chem. 2004; 84, 137–143.

19. Liu J. J., Li S. P., Wang Y. T. Optimization for quantitative determination of four flavonoids in epimedium by capillary zone electrophoresis coupled with diode array detection using central composite design. J. Chromatogr. A 2006; 1103, 344–349.

20. Careri M., Elviri L., Mangia A., Musci M. Spectrophotometric and coulometric detection in the high-performance liquid chromatography of flavonoids and optimization of sample treatment for the determination of quercetin in orange juice. J. Chromatogr. A 2000; 881, 449–460.

21. De Rijke E., Out P., Niessen W. M. A., Ariese F., Gooijer C., Brinkman U. A. Th. Analytical separation and detection methods for flavonoids. J. Chromatogr. A 2006; 1112, 31–63.

22. Magalhães P. J., Guido, L. F., Cruz, J. M., Barros A. A. Analysis of xanthohumol and isoxanthohumol in different hop products by liquid chromatography-diode array detection-electrospray ionization tandem mass spectrometry. J. Chromatogr. A 2007; 1150, 295–301.

23. Aguilar-Sánchez R., Áhuatl-García F., Dávila-Jiménez M. M., Elizalde-González M. P., Guevara-Villa M. R. G. Chromatographic and electrochemical determination of quercetin and kaempferol in phytopharmaceuticals. J. Pharm. Biomed. Anal. 2005; 38, 239–249.

24. Careri M., Mangia A., Musci M. Overview of the applications of liquid chromatography - mass spectrometry interfacing systems in food analysis: naturally occurring substances in food. J. Chromatogr. A 1998; 794, 263–297.

25. Abad-Garcia B., Berrueta L. A., Lopéz Márquez D. M., Crespo-Ferrer I., Gallo B., Vicente F. Optimization and validation of a methodology based on solvent extraction and liquid chromatography for the simultaneous determination of several polyphenolic families in fruit juices. J. Chromatogr. A 2007; 1154, 87–96.

26. Olszewska M. Separation of quercetin, sexangularetin, kaempferol and isorhamnetin for simultaneous HPLC determination of flavonoid aglycones in inforescences, leaves and fruits of three Sorbus species. J. Pharm. Biomed. Anal. 2008; 48, 629–635.

27. Hertog M. G. L., Hollman P. C. H., Venema D. P. Optimization of a quantitative HPLC determination of potentially anticarcinogenic flavonoids in vegetables and fruits. J. Agric. Food. Chem. 1992; 40, 1591–1598.

28. Mcdonald M. S., Hughes M., Burns J., Lean M. E. J., Matthews D., Crozier A. Survey of free and conjugated myricetin and quercetin content of red wines of different geographical origin. J. Agric. Food. Chem. 1998; 46, 368–375.

29. Komes D., Belśćak-Cvitanović A., Horžić D., Rusak G., Likić S., Berendika M. Phenolic composition and antioxidant properties of some traditionally used medical plants affected by the extraction time and hydrolysis. Phytochem. Anal. 2010; 22, 172–180.

30. Denhkharghanian M., Adenier H., Vijayalakschmi M. A. Study of flavonoids in aqueous spinach exctract using positive electrospray ionisation tanden quadrupole mass spectrometry. Food Chem. 2010; 121, 863–870.

31. Kao T. H., Huang S. C., Inbaraj S., Chen B. H. Determination of flavonoids and saponins in Gynostemma pentaphyluum (Thunb.) Makino by liquid chromatography – mass spectrometry. Anal. Chim. Acta. 2008; 626, 200–211.

32. Justesen U., Knuthsen P., Leth T. Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection. J. Chromatogr. A 1998; 799, 101–110.

33. Wach A., Pyrzyńska K., Biesaga M. Quercetin content in some food and herbal samples. Food Chem. 2007; 100, 699–704.

34. Coppin J. P., Xu Y., Chen H., Pan M-H., Ho CH-T., Juliani R., Simon J., Wu Q. Determination of flavonoids by LC/MS and anti-inflammatory activity in Moringa oleifera. J. Functional Foods 2013; 5, 1892–1899.

35. Xu Q., Schen Y., Wang H., Zhang N., Xu S., Zhang L. Application of response surface methology to optimise extraction of flavonoids from fructus sophorae. Food Chem. 2013; 138, 2122–2129.

36. Bae H., Jayaprakasha G. H., Jifon J., Patil B. S. Extraction efficiency and validation of an HPLC method for flavonoids analyis in peppers. Food Chem. 2012; 130, 751–758.

37. Francescato L. N., Debendetti L. S., Schwanz T. G., Bassani V. L., Henriques A. T. Identification of phenolic compounds in Equisetum giganteum by LC-ESI-MS/MS and new appproach to total flavonid quantification. Talanta 2013; 105, 192–203.

38. Luo Ch., Wang X., Gao G., Eang L., Li Y., Sun Ch. Identification and quantification of free, conjugate and total phenolic compounds in leaves of 20 sweet potato cultivars by HPLC-DAD and HPLC-ESI-MS/MS. Food. Chem. 2013; 141, 2697–2706.

39. Tamayo F. G., Turiel E., Martín-Esteban A. Molecularly imprinted polymers for solid–phase extraction and spolid – phase microextraction: Recent developments and future trends. J. Chromatogr. A 2007; 1152, 32–40.

40. He Ch., Long Y., Pan J., Li K., Liu F. Application of molecularly imprinted polymers to solid–phase extraction of analytes from real samples. J. Biochem. Bioph. Methods. 2007; 70, 133–150.

41. Denderz N., Lehotay J., Čižmárik J. Molecularly imprinted polymers. Čes. slov. Farm. 2012; 61, 79–86.

42. Lachová M., Lehotay J., Skačáni I., Čižmárik J. Application of molecularly imprinted polymers in analytical and pharmaceutical chemistry. Čes. slov. Farm. 2007; 56, 159–164.

43. Karim K., Breton F., Rouillon R., Piletska E. V., Guerreiro A., Chinanela I., Piletsky S. A. How to fine effective functional monomers for effective molecularly imprinted polymers? Adv. Drug Delivery Rev. 2005; 57, 1795–1808.

44. Mahony J. O., Nolan K., Smyth M. R., Mizaikoff B. Moleculary imprinted polymers – potential and challenges in analytical chemistry. Anal. Chim. Acta 2005; 534, 31–39.

45. Zeng H., Wang Y., Liu X., Kong J., Nie Ch. Preparation of molecular imprinted polymers using bi-functional monomer and bi-crossingr fo solid-phase extraction of rutin. Talanta 2012; 93, 172–181.

46. Chen Z., Wang M., Fu Y., Yu H., Di D. Preparation of quercetin molecularly imprinted polymers. Des. Monomers Polym. 2012; 15, 93–111.

47. Yu L., Yun Y. Zhang W., Wang L. Preparation, recognition characteristics and properties for quercetin molecularly imprinted polymers. Desalin. Water Treat. 2011; 34, 309–314.

48. Xie J., Zhu L., Luo H., Zhou L., Li Ch., Xu X. Direct extraction of specific pharmacophoric flavonoids from gingko leaves using a molecularly imprinted polymer for quercetin. J. Chromatogr. A 2001; 934, 1–11.

49. Mahony J. O., Molinelli A., Nolan K., Smyth M.R., Mizaikoff B. Anatomy of a successful imprint: Analysing the recognition mechanisms of a molecularly imprited polymer for quercetin. Biosens. Bioelectron. 2006; 21, 1383–1392.

50. Schwarz L. J., Danylic B., Harris S. J., Boysen R. I., Hearn M. T. W. Preparation of molecularly imprited polymers for the selective recognition of the bioactive polyphenol, (E)-resveratrol. J. Chromatogr. A 2011; 1218, 2189–2195.

51. Song X., Li J., Wang J., Chen L. Quercetin molecularly imprinted polymers: Preparation, recognition characteristics and properties as sorbent for solid-phase extraction. Talanta 2009; 80, 694–702.

52. Zhang Z., Yun Y., Li Ch. Preparation and adsorption performance of molecularly imprinted polymers for kaempferol. Desalin. Water Treat. 2013; 51, 3914–3919.

53. Li L., Chen X. Preparation and spectral characterization of apigenin moleculrly imprinted polymer. Acta Pharm. Sinica 2009; 44, 868–872.

Štítky
Pharmacy Clinical pharmacology
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#