#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Development of dissolution method for warfarin sodium tablets


Authors: Ivana Lukášová;  Jan Muselík;  Aleš Franc
Published in the journal: Čes. slov. Farm., 2017; 66, 281-286
Category: Original Articles

Summary

Warfarin is intensively discussed drug with narrow therapeutic index. In the past, its generic substitution was identified as a cause of bleeding. Altered quality of the active substance or varying drug content was discussed. The substance quality can be evaluated with adequate dissolution method. An official dissolution method with aqueous medium exists, however this method is non-discriminatory. In the first 15 minutes the whole amount of the active pharmaceutical ingredient is released from a tested dosage form, which does not allow comparison between tablets from different producers and it also makes difficult to track the changes throughout stability testing. In the literature, there is a well known method using pH 6.8 buffer, which seems to be a suitable alternative to water. The aim of this study was to prove, that this alternative medium, when two stirring speeds for dissolution (50 or 25 rpm) are used, will be suitable for calculation of similarity and difference factor and if it will be eventually discriminatory with regard to particle size and radial hardness. For this purpose we prepared tablets with 10 mg of warfarin sodium in form of crystalline clathrate with isopropanol. Tablets differed by particle size of active pharmaceutical ingredient (d50 = 4.8, or d50 = 22.5 μm respectively) and by radial hardness (30, or 100 N respectively). The content uniformity of the tablets was determined using process capability index (Cpk) and Bergum method. It was confirmed that the dissolution medium with pH of 6.8 allows comparison of dissolution profiles by similarity and difference factors but under given conditions it is not discriminatory.

Key words:
warfarin • dissolution method • particle size distribution • radial hardness • similarity factor • difference factor


Zdroje

1. Benet L. Z., Goyan J. E. Bioequivalence and narrow therapeutic index drugs. Pharmacotherapy. 1995; 15, 433–440.

2. Zhang X., Wen H., Fan J., Vince B., Li T., Gao W., Kinjo M., Brown J., Sun W., Jiang W., Lionberger R. Integrating in vitro, modeling, and in vivo approaches to investigate warfarin bioequivalence. CPT Pharmacometrics Syst. Pharmacol. 2017; 6, 523–531.

3. Benet L. Z. The role of BCS (Biopharmaceutics Classification System) and BDDCS (Biopharmaceutics Drug Disposition Classification System) in drug development. J. Pharm. Sci. 2013; 102, 34–42.

4. EMEA. Guideline on the investigation of bioequivalence (2010). http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/01/WC500070039.pdf (25. 10. 2017).

5. EMEA. ICH Topic Q 1 D; Bracketing and matrixing designs for stability testing of drug substances and drug products (2002). http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002652.pdf (20. 10. 2017).

6. U.S. Pharmacopeia. USP 29 Warfarin sodium tablets. http://www.pharmacopeia.cn/v29240/usp29nf24s0_m88790.html (18. 10. 2017).

7. Nguyenpho A., Ciavarella A. B., Siddiqui A., Rahman Z., Akhtar S., Hunt R., Korang-Yeboah M., Khan M. A. Evaluation of in-use stability of anticoagulant drug products: Warfarin sodium. J. Pharm. Sci. 2015; 104, 4232–4240.

8. Ali S. L., Krämer J. Pharmaceutical quality of warfarin sodium tablets: A multinational postmarket comparative study. Pharm. Ind. 1999; 61, 363–368.

9. O’Reilly R. A., Nelson E., Levy G. Physicochemical and physiologic factors affecting the absorption of warfarin in man. J. Pharm. Sci. 1966; 55, 435–437.

10. Stella V. J., Mooney K. G., Pipkin J. D. Dissolution and ionization of warfarin. J. Pharm. Sci. 1984; 73, 946–948.

11. Quereshi S. A. Choice of rotation speed (rpm) for bio-relevant drug dissolution testing using a crescent-shaped spindle. Eur. J. Pharm. Sci. 2004; 23, 271–275.

12. Wagner J. G., Welling P. G., Lee K. P., Walker J. E. In vivo and in vitro availability of commercial warfarin tablets. J. Pharm. Sci. 1971; 60, 666–677.

13. Franc A., Muselík J., Goněc R., Vetchý D. Biphasic dissolution method for quality control and assurance of drugs containing active substances in the form of weak acid salts. Acta Pharm. 2016; 66, 139–145.

14. McCormick T. J., Gibson A. B., Diana F. J. Development and validation of a dissolution method for warfarin sodium and aspirin combination tablets. J. Pharm. Biomed. Anal. 1997; 15, 1881–1891.

15. Serajuddin A. T., Sheen P. C., Augustine M. A. Common ion effect on solubility and dissolution rate of the sodium salt of an organic acid. J. Pharm. Pharmacol. 1987; 39, 587–591.

16. FDA. Guidance for Industry: Dissolution testing of immediate release solid oral dosage forms (1997). https://www.fda.gov/downloads/drugs/guidances/ucm070237.pdf (18. 10. 2017).

17. University of Veterinary and Pharmaceutical Sciences Brno, Franc, A., Muselík, J. Způsob přípravy pevné lékové formy se sodnou solí warfarínu ve formě klathrátu izopropanolu. Patent CZ 304136 Czech Republic, 2013.

18. Muselík J., Franc A., Doležel P., Goněc R., Krondlová A., Lukášová I. Influence of process parameters on content uniformity of a low dose active pharmaceutical ingredient in a tablet formulation according to GMP. Acta Pharm. 2014; 64, 355–367.

19. Český lékopis 2009. 1. vydání. Praha: Grada Publishing 2009.

20. FDA. Guidance for industry. ANDAs: Blend uniformity analysis (1999). https://www.fda.gov/ohrms/dockets/98fr/992635gd.pdf (20. 10. 2017).

21. Shah V. P., Tsong Y., Sathe P., Williams R. L. Dissolution profile comparison using similarity factor, f2. http://www.dissolutiontech.com/DTresour/899Art/DissProfile.html (18. 10. 2017).

22. Anderson N. H., Bauer M., Boussac N., Khan-Malek R., Munden P., Sardaro M. An evaluation of fit factors and dissolution efficiency for the comparison of in vitro dissolution profiles. J. Pharm. Biomed. Anal. 1998; 17, 811–822.

23. Ondrejček P., Svačinová P., Vraníková B., Holas O., Rabišková M., Škubalová Z. Compaction equation and its use in the determination of compressibility of pharmaceutical materials. Poster 2016.

24. Sawoniak A.E., Shalansky K.F., Zed P.J., Sunderji R. Formulary considerations related to warfarin interchangeability. Can. J. Hosp. Pharm. 2002; 55, 215–218. http://cjhp-online.ca/index.php/cjhp/article/viewFile/578/679

25. Interchangeability of warfarin sodium preparations. https://www.ab.bluecross.ca/dbl/pdfs/dblreportdec00update.pdf (13. 10. 2017).

26. Wittkowsky A. K. Generic warfarin: implications for patient care. Pharmacotherapy 1997; 17, 640–643.

27. Perez-Wilson M. Machine/Process Capability Study. A five stage methodology for optimizing manufacturing processes. 6th ed. Arizona: Advanced Systems Consultants 2014; s. 357.

28. Pearn W. L., Shu M. H. Manufacturing capability control for multiple power-distribution switch processes based on modified Cpk MPPAC. Microelectron. Reliab. 2003; 43, 963–975.

29. Bergum J. S., Li H. Acceptance limits for the new ICH USP 29 content-uniformity test. Pharm. Technol. 2007; 31, 90–100.

30. FDA. Guidance for industry. Immediate release solid oral dosage forms (1995). https://www.fda.gov/downloads/drugs/guidances/ucm070636.pdf (22. 10. 2017).

Štítky
Addictology Clinical biochemistry Paediatric clinical oncology Paediatric psychiatry Diabetology Endocrinology Pharmacy Clinical pharmacology Intensive Care Medicine Internal medicine General practitioner for children and adolescents General practitioner for adults Psychiatry Toxicology Pharmaceutical assistant
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#