#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Ethical and legal requirements for vaccination against COVID-19


Authors: Aleš Franc;  Vladimír Bíba
Authors place of work: Advokátní kancelář, Praha
Published in the journal: Čes. slov. Farm., 2022; 71, 3-12
Category: Review Articles
doi: https://doi.org/https://doi.org/10.5817/CSF2022-1-3

Summary

In the current context, there is an extraordinary interest of states in vaccinating the population to prevent Covid-19. In the Czech Republic, gene mRNA and vector DNA vaccines are approved only with conditional marketing authorization, for which a complete and long-term safety assessment is currently lacking. Vaccines show some potential risks, such as penetration of lipid nanoparticles into surrounding tissues, incorporation of DNA into the host genome, ADE syndrome, development of resistant mutations, myocarditis, pericarditis, and thromboembolic events. Since the level of antibodies after vaccination is soon decreasing, immunity after the disease persists longer, and the disease's fatality rate is very low, especially in adolescents, only voluntary vaccination is ethically acceptable, without any direct or indirect restrictions on the unvaccinated. The conclusion is in line with the principles of medical ethics of nonmaleficence, beneficence, autonomy, and justice.

Keywords:

ethics – COVID-19 – gene vaccines – risks – voluntariness


Zdroje

1. Franc A. Vakcína z pohledu farmaceuta. Čes. slov. Farm. 2020; 69(4), 151–162.

2. Franc A. Jsou vakcíny bezpečné? Prakt. Prakt. lékáren. 2020; 16(4), 204–207.

3. Franc A., Bíba V. Transportní systémy pro mRNA vakcíny. Remedia 2021; 31, 74–81.

4. Kaur S. P., Gupta V. COVID-19 Vaccine: A comprehensive status report. Virus Res. v2020; 198114.

5. Čečetková B., Smetana J., Chlíbek R. Epidemiol. Mikrobiol. Imunol. 2014; 63(4), 278–284.

6. Nařízení Komise (ES) č. 507/2006 ze dne 29. března 2006 o podmínečné registraci pro humánní léčivé přípravky spadající do oblasti působnosti nařízení Evropského parlamentu a Rady (ES) č. 726/2004.

7. COVID-19 mRNA vaccine, Risk management plan (RMP) Comirnaty (Pfizer). European Medicine Agency. https:// www.ema.europa.eu/en/documents/rmp-summary/ comirnaty-epar-risk-management-plan_en.pdf (citováno 4. 10. 2021).

8. COVID-19 mRNA vaccine, Risk management plan (RMP) COVID-19 Vaccine Janssen. European Medicine Agency. https://www.ema.europa.eu/en/documents/rmp-summary/ covid-19-vaccine-janssen-epar-risk-management- plan_en.pdf (citováno 4. 10. 2021).

9. COVID-19 Vaccine (ChAdOx1-S [recombinant]) Risk management plan (RMP) VAXZEVRIA (AstraZeneca). European Medicine Agency. https://www.ema.europa.eu/en/ documents/rmp-summary/vaxzevria-previously-covid- 19-vaccine-astrazeneca-epar-risk-management-plan_ en.pdf (citováno 4. 10. 2021).

10. COVID-19 mRNA vaccine, Risk management plan (RMP) Moderna. European Medicine Agency. https://www.ema. europa.eu/en/documents/rmp-summary/covid-19-vaccine- moderna-epar-risk-management-plan_en.pdf (citováno 4. 10. 2021).

11. Buržová R. Etika ve zdravotnictví. Ostravská univerzita 2008; 31–34.

12. Sdělení č. 96/2001 Sb. m. s., Sdělení Ministerstva zahraničních věcí o přijetí Úmluvy na ochranu lidských práv a důstojnosti lidské bytosti v souvislosti s aplikací biologie a medicíny: Úmluva o lidských právech a biomedicíně.

13. Angeli F., Spanevello, A., Reboldi G., Visca D., Verdecchia P. SARS-CoV-2 vaccines: Lights and shadows. Eur. J. Intern. Med. 2021; 8, 1–8.

14. Naru Z., Shibo J., Lanying D. Expert Rev. Vaccines 2014; 13(6), 761–774.

15. Coleman C. M., Venkataraman T., Liu Y. V., Glenn G. M., Smith G. E., Flyer D. C., Frieman M. B. MERS-CoV spike nanoparticles protect mice from MERS-CoV infection. Vaccine 2017; 35(12), 1586–1589.

16. Painter M. M., Mathew D., Goel R. R., Apostolidis S. A., Pattekar A., Kuthuru O., Wherry E. J. Rapid induction of antigen-specific CD4+ T cells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination. Immunity 2021; 54(9), 2133–2142.

17. Baden L. R., El Sahly, H. M., Essink B., Kotloff K., Frey, S., Novak R., Zaks T. Efficacy and safety of the mRNA- 1273 SARS-CoV-2 vaccine. NEJM 2021; 384(5), 403–416.

18. Rozhodnutí Ministerstva zdravotnictví ČR ze dne 1. září 2021, č.j.: MZDR 32150/2021-5/OLZP. https://vakciny. avenier.cz/userfiles/file/dodatecna%20davka%20Rozhodnuti- o-docasnem-povoleni-pouziti-registrovanych-lecivych-pripravku-Comirnaty-a-Spikevax-dodatecnadavka. pdf (citováno 4. 10. 2021).

19. Bíba V. K článku „Možnosti a principy vakcinace proti covidu- 19“. Prakt. Lékáren. 2021; 17(2), e28–e31.

20. Comirnaty. Assessment report COVID-19 mRNA vaccine (nucleoside-modified) 19 February 2021. EMA/707383/2020 Corr.1*1 Committee for Medicinal Products for Human Use (CHMP). https://www.ema. europa.eu/en/documents/assessment-report/comirnaty- epar-public-assessment-report_en.pdf (citováno 4. 10. 2021).

21. Tobian A. A., Canaday D. H., Boom W. H., Harding C. V. Bacterial heat shock proteins promote CD91-dependent class I MHC cross-presentation of chaperoned peptide to CD8+ T cells by cytosolic mechanisms in dendritic cells versus vacuolar mechanisms in macrophages. J. Immunol. 2004; 172(9), 5277–5286.

22. Ying H., Zaks T. Z., Wang R. F., Irvine K. R., Kammula U. S., Marincola F. M., Restifo N. P. Cancer therapy using a self-replicating RNA vaccine. Nat. Med. 1999; 5(7), 823– 827.

23. Jarnjak-Jankovic S., Pettersen R. D., Sæbøe-Larssen S., Wesenberg F., Gaudernack G. Evaluation of dendritic cells loaded with apoptotic cancer cells or expressing tumour mRNA as potential cancer vaccines against leukemia. BMC Cancer 2005; 5(1), 1–10.

24. Bradbury E. J., McMahon S. B., Ramer M. S. Keeping in touch: sensory neurone regeneration in the CNS. Trends Pharmacol. Sci. 2000; 21(10), 389–394.

25. Urgent Open Letter from Doctors and Scientists to the European Medicines Agency regarding COVID-19 Vaccine Safety Concerns. 1. september 2021. https:// doctors4covidethics.medium.com/urgent-open-letter- -from-doctors-and-scientists-to-the-european-medicines- agency-regarding-covid-19-f6e17c311595 (citováno 4. 10. 2021).

26. EMA answer to Urgent Open Letter from Doctors and Scientists to the European Medicines Agency regarding COVID-19 Vaccine Safety Concerns. 23 March 2021 EMA/140520/2021 Stakeholders and Communication Division. https://www.ema.europa.eu/en/documents/ other/reply-open-letter-concerning-vaccines-covid-19_ en.pdf (citováno 4. 10. 2021).

27. Custers J., Kim, D., Leyssen M., Gurwith M., Tomaka F., Robertson J. Vaccines based on replication incompetent Ad26 viral vectors: standardized template with key considerations for a risk/benefit assessment. Vaccine 2021; 39(22), 3081–3101.

28. Wang Z., Troilo P. J., Griffiths T. G., Harper L. B., Barnum A. B., Pacchione S. J., Ledwith B. J. Characterization of integration frequency and insertion sites of adenovirus DNA into mouse liver genomic DNA following intravenous injection. Gene Ther. 2021; 164, 1–11.

29. Doerfler W. Adenoviral vector DNA-and sars-cov-2 mRNA- based Covid-19 vaccines: possible integration into the human genome-are adenoviral genes expressed in vector-based vaccines? Virus Res. 2021; 198466–198466.

30. Muñoz F. M., Cramer J. P., Dekker C. L., Dudley M. Z., Graham B. S., Gurwith M., Lambert P. H. Vaccine-associated enhanced disease: Case definition and guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine 2021; 39(22), 3053–3066.

31. Lee W. S., Wheatley A. K., Kent S. J., DeKosky B. J. Antibody- dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat. Microbiol. 2020; 5(10), 1185–1191.

32. Tetro J. A. Is COVID-19 receiving ADE from other coronaviruses? Microbes infect. 2020; 22(2), 72–73.

33. Ricke D. O. Two different antibody-dependent enhancement (ADE) risks for SARS-CoV-2 antibodies. Front. Immunol. 2021; 12, 443.

34. Wen J., Cheng Y., Ling R., Dai Y., Huang B., Huang W., Jiang Y. Antibody-dependent enhancement of coronavirus. Int. J. Infect. Dis. 2020; 5, 483–489.

35. Eroshenko N., Gill T., Keaveney M. K., Church G. M., Trevejo J. M., Rajaniemi H. Implications of antibody- -dependent enhancement of infection for SARS-CoV-2 countermeasures. Nat. Biotech. 2020; 38(7), 789–791.

36. Bar-On Y. M., Goldberg Y., Mandel M. Protection of BNT162b2 vaccine booster against covid-19 in Israel. N. Engl. J. Med. 2021; 385, 1393–1400.

37. Subbaraman N. How do vaccinated people spread Delta? What the science says. Nature 2021; 596(7872), 327–328.

38. Vaccinated people make up 75 % of recent COVID-19 cases in Singapore, but few fall ill. Asia Pacific. Reuters. July 23, 2021. https://www.reuters.com/world/asia-pacific/ vaccinated-people-singapore-make-up-three-quarters-recent-covid-19-cases-2021-07-23/ (citováno 4. 10. 2021).

39. SARS-CoV-2 variants of concern as of 30 September 2021. European Centre for Disease Prevention and Control An agency of the European Union. https://www. ecdc.europa.eu/en/covid-19/variants-concern (citováno 4. 10. 2021).

40. Mlcochova P., Kemp, S., Dhar M. S., Papa G., Meng B., Mishra, S., Datir, R. SARS-CoV-2 B. 1.617. 2 Delta variant emergence, replication and sensitivity to neutralising antibodies. BioRxiv 2021 (In review).

41. Yadav P. D., Sapkal G., Ella R., Sahay R. R., Nyayanit D. A., Patil, D. Y., Bhargava B. Neutralization against B. 1.351 and B. 1.617. 2 with sera of COVID-19 recovered cases and vaccinees of BBV152. BioRxiv 2021 (In review).

42. Petráš M. Covid-19 z pohledu vakcinologa. Remedia 2021; 1, 71–74.

43. Kennedy D. A., Read A. F. Monitor for COVID-19 vaccine resistance evolution during clinical trials. PLoS biol. 2020; 18(11), e3001000.

44. Hussain I., Pervaiz N., Khan A., Saleem S., Shireen H., Wei D. Q., Abbasi A. A. Evolutionary and structural analysis of SARS-CoV-2 specific evasion of host immunity. Genes Immun. 2020; 21(6), 409–419.

45. Dan J. M., Mateus J., Kato Y., Hastie K. M., Yu E. D., Faliti C. E., Crotty S. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021; 371(6529).

46. Coronavirus (COVID-19) Update: June 25, 2021. The U.S. Food and Drug Administration (FDA). June 25, 2021. https://www. fda.gov/news-events/press-announcements/coronaviruscovid- 19-update-june-25-2021 (citováno 4. 10. 2021).

47. Hudson B., Mantooth R., DeLaney M. Myocarditis and pericarditis after vaccination for COVID‐19. JACEP Open 2021; 2(4), e12498.

48. Hodnocení myokarditidy a perikarditidy u vakcín proti onemocnění COVID-19. Státní ústav pro kontrolu léčiv (SÚKL). Zpráva ze dne 11. 6. 2021. https://www.sukl.cz/ hodnoceni-myokarditidy-a-perikarditidy-u-vakcin-proti (citováno 4. 10. 2021).

49. Starekova J., Bluemke D. A., Bradham W. S., Grist T. M., Schiebler M. L., Reeder S. B. Myocarditis associated with mRNA COVID-19 vaccination. Radiology 2021; 211430.

50. Katina S., Krátká Z. Jsou děti významnými šiřiteli koronavirové infekce, nebo se jedná o mýtus? Prolékaře.cz. 2021. https://www.prolekare.cz/covid-19/jsou-deti-vyznamnymi- siriteli-koronavirove-infekce-nebo-se-jedna- -o-mytus-126622 (citováno 4. 10. 2021).

51. Pooled number of deaths by age group. Graphs and maps – Euromomo. https://www.euromomo.eu/graphs- and-maps/ (citováno 4. 10. 2021).

52. Smith C., Odd D., Harwood R., Ward J., Linney M., Clark M., Fraser L. Deaths in children and young people in england following SARS-CoV-2 infection during the first pandemic year: a national study using linked mandatory child death reporting data. Research Square; 2021. https://assets.researchsquare.com/files/rs-689684/ v1/0f1fbef9-0308-4ce1-9271-ed1e922c846d.pdf?c =1631885995 (citováno 4. 10. 2021).

53. Levin A. T., Hanage W. P., Owusu-Boaitey N., Cochran K. B., Walsh S. P., Meyerowitz-Katz G. Assessing the age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public policy implications. Eur. J. Epidemiol. 2020; 35, 1123–1138.

54. Jackson L. A., Anderson E. J., Rouphael N. G., Roberts P. C., Makhene M., Coler R. N. An mRNA vaccine against SARS-CoV-2-preliminary report. N. Engl. J. Med. 2020; 383(20), 1920–1931.

55. Østergaard S. D., Schmidt M., Horváth-Puhó E., Thomsen R. W., Sørensen H. T. Thromboembolism and the Oxford–AstraZeneca COVID-19 vaccine: side-effect or coincidence? Lancet 2021; 397(10283), 1441–1443.

56. Marks P. Joint CDC and FDA Statement on Johnson & Johnson COVID-19 Vaccine. Center for Biologics Evaluation and Research (CBER). April 13, 2021. https://www.fda. gov/news-events/press-announcements/joint-cdc-and- fda-statement-johnson-johnson-covid-19-vaccine (citováno 4. 10. 2021).

57. Turner J. S., Kim W., Kalaidina E., Goss C. W., Rauseo A. M., Schmitz A. J., Ellebedy A. H. SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature 2021; 595, 421–425.

58. Přehled: Nahlášená podezření na nežádoucí účinky po vakcínách proti covid-19. Státní ústav pro kontrolu léčiv (SÚKL). https://www.sukl.cz/tydenni-zpravy-o-prijatych- -hlasenich-podezreni-na-nezadouci (citováno 8. 10. 2021).

59. Sedláčková H. Kdyby lidé věděli, že se po očkování mají s kým poradit, zvýšilo by to jejich důvěru, říká klinická farmaceutka z IKEM Kornélia Chrapková. Zdravotnický denník. 28. 5. 2021. https://www.zdravotnickydenik.cz/2021/05/ kdyby-lide-vedeli-ze-se-po-ockovani-maji-s-kym-poradit-zvysilo-by-to-jejich-duveru-rika-klinicka-farmaceutka-z-ikem- kornelia-chrapkova/ (citováno 8. 10. 2021).

60. Doshi P. Pandemrix vaccine: why was the public not told of early warning signs? BMJ 2018; 362, k3948.

61. Walach H., Klement R. J., Aukema W. The safety of covid- 19 vaccinations – we should rethink the policy. Vaccines 2021; 9(7), 693.

62. VAERS Vaccine Adverse Event Reporting System – Guide to Interpreting VAERS Data. https://vaers.hhs.gov/data/ dataguide.html (citováno 8. 10. 2021).

63. CCOVID19: Přehled aktuální situace v ČR. Ministerstvo zdravotnictví ČR (MZ ČR). https://onemocneni-aktualne. mzcr.cz/covid-19 (citováno 8. 10. 2021).

64. Blatný se odmítá omluvit. Přímo na covid zemřela jen třetina lidí, zopakoval. 23. ledna ECHO24, 24. 1. 2021. https://echo24.cz/a/S9MvQ/blatny-se-odmita-omluvitprimo- na-covid-zemrela-jen-tretina-lidi-zopakoval (citováno 8. 10. 2021).

65. Šimek S. Problémy péče o nemocné se STEMI v době koronavirové pandemie. Interv. Akut. Kardiol. 2021; 20(2), 93–97.

66. Sánchez G. R. Monthly suicide rates during the COVID-19 pandemic: Evidence from Japan. Econ. Lett. 2021; 207, 110014.

67. Kyncl J., Prochazka B., Goddard N. L., Havlickova M., Castkova J., Otavova M., Kriz B. A study of excess mortality during influenza epidemics in the Czech Republic, 1982–2000. Eur. J. Epidemiol. 2005; 20(4), 365–371.

68. Ioannidis J. P. A. Infection fatality rate of COVID-19 inferred from seroprevalence data. Bull. World Health Organ. 2021; 99, 19–33F.

69. Ioannidis J. P. A. Reconciling estimates of global spread and infection fatality rates of COVID‐19: An overview of systematic evaluations. Eur. J. Clin. Invest. 2021; 51(5), e13554.

70. Moghadas S. M., Vilches T. N., Zhang K., Wells C. R., Shoukat, A., Singer B. H., Galvani, A. P. The impact of vaccination on COVID-19 outbreaks in the United States. Clin. Infect. Dis. 2021; ciab079.

Štítky
Pharmacy Clinical pharmacology
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#