#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Effect of Selected Acidic Foodstuffs and Beverages on Enamel Mechanical Properties of Human Extracted Teeth and their Role in Dental Erosion Origin


Authors: J. Morozova 1;  Z. Zapletalová 1;  R. Čtvrtlík 2;  V. Ranc 3
Authors‘ workplace: Klinika zubního lékařství, LF UP a FN, Olomouc 1;  Regionální centrum pokročilých technologií a materiálů, Společná laboratoř optiky UP a Fyzikálního ústavu Akademie věd ČR, PřF UP Olomouc 2;  Katedra analytické chemie, PřF UP, Olomouc 3
Published in: Česká stomatologie / Praktické zubní lékařství, ročník 112, 2012, 3, s. 77-87
Category: Original Article – Experimental Study

Overview

Introduction:
In the last twenty years we can observe in modern society significant increase of fruit juices and carbonated soft drinks consumption. The most of them besides water and different additives contain citric, phosphoric and carbonic acids. The pH of these beverages is usually lower than 4.0. Frequent exposure of hard dental tissues to dietary acids leads to surface softening and irreversible erosive wear.

Aim:
The aim of our in vitro study was to determine the changes of enamel microhardness and elastic modulus of human extracted molars immersed into selected soft drinks (Kofola, Coca-Cola), orange juice and white yoghurt.

Materials and Methods:
40 enamel samples (5x3x1.5 mm) were prepared from intact vestibular and oral surfaces of freshly extracted human molars. At the beginning of the experiment microhardness and elastic modulus were measured by nanoindentation (NanoTest NT 600, Micromaterials, Great Britain). Surface topography of enamel samples was studied by atomic force microscopy. Received data were used as control. After that the enamel samples were randomly divided into 4 groups. The samples of the 1st group were immersed to soft drink Kofola (Kofola JSC, Krnov, Czech Republic), the samples of the 2nd group to Coca-Cola (Coca-Cola HBC, Czech Republic), the samples of the 3rd group were exposed to orange juice Hello (Nivnice, Czech Republic), the samples of the 4th group to white yoghurt Klasik (OLMA, Czech Republic). The time of exposure was 5 minutes. Yoghurt and drinks had room temperature. The pH and titratable acidity of every beverage and yoghurt were determined. After immersion the samples were rinsed with distilled water and dried up. After that microhardness and elastic modulus were measured. Surface topography of the samples was studied again. Received data were statistically worked up (paired Student’s t-test) and compared with initial data before exposure to acidic drinks and yoghurt.

Results:
The most distinguished reduction of enamel microhardness was observed among samples exposed to Coca-Cola (43.6 ± 14.4%) and orange juice (41.7 ± 3.4%). The most distinguished decrease of elastic modulus was observed among samples immersed to orange juice (15.7 ± 4.7%) and Kofola (14.9 ± 9.0%). The influence of yoghurt on enamel mechanical properties was insignificant (p > 0.05).

Conclusions:
The results of our experiment prooved significant reduction of enamel mechanical properties after their exposure to acidic beverages. Despite of acidic pH, yoghurt did not cause significant changes of enamel mechanical properties due to its mineral components.

Key words:
dental erosion – diet acids – microhardness – elastic modulus – nanoindentation – atomic force microscopy


Sources

1. Attin, T.: Methods for assessment of dental erosion. In Lussi, A., Addy, M., Angmar-Mansson, B., et al.: Dental erosion from diagnosis to therapy, Basel, Karger, 2006, s. 155, 164.

2. Barbour, M. E., Finke, M., Parker, D. M., Hughes, J. A., Allen, G. C., Addy, M.: The relationship between enamel softening and erosion caused by soft drinks at a range of temperatures. J. Dent., roč. 34, 2006, č. 3, s. 207–213.

3. Bartlett, D. W., Shah, P.: A critical review of non-carious cervical (wear) lesions and the role of abfraction, erosion and abrasion. J. Dent. Res., roč. 85, 2006, č. 4, s. 306–312.

4. Borjian, A., Ferrari, C. C. F., Anouf, A., Touyz, L. Z. G.: Pop-Cola acids and tooth erosions: an in vitro, in vivo, electron-microscopic, and clinical report [cit. 2011-07-05]. Dostupný z http://www.hindawi.com/journals/ijd/2010/957842/

5. Čečetková, A., Ondrašovičová, J., Petrášová, A.: Získané zmeny tvrdých zubných tkanív I. Erózia. Stomatológ, roč. 2, 2007, č. 17, s. 28–31.

6. Davis, R. E., Marshall, T. A., Qian, F., Warren, J. J., Wefel, J. S.: In vitro protection against dental erosion afforded by commercially available, calcium-fortified 100 percent juices. J. Am. Dent. Assoc., roč. 138, 2007, č. 12, s. 1593–1598.

7. Edwards, M., Creanor, S. L., Foye, R. H., Gilmour, W. H.: Buffering capacities of soft drinks: the potential influence of dental erosion. J. Oral Rehabil., roč. 26, 1999, č. 12, s. 923–927.

8. Eisenburger, M., Addy, M.: Influence of liquid temperature and flow rate on enamel erosion and surface softening. J. Oral Rehabil., roč. 30, 2003, č. 11, s. 1076–1080.

9. Featherstone, J. D. B., Lussi, A.: Understanding the chemistry of dental erosion. In Lussi, A., Addy, M., Angmar-Mansson, B., et al.: Dental erosion from diagnosis to therapy, Basel, Karger, 2006, s. 68.

10. Hara, A. T., Ando, M., Gonzalez-Cabezas, C., Cury, J. A., Serra, M. C., Zero, D. T.: Protective effect of the dental pellicle against erosive challenges in situ. J. Dent. Res., roč. 85, 2006, č. 7, s. 612–616.

11. Hara, A. T., Zero, D. T.: Biological factors. In Lussi, A., Addy, M., Angmar-Mansson, B., et al.: Dental erosion from diagnosis to therapy, Basel, Karger, 2006, s. 89, 91, 95.

12. Hooper, S. M., Newcombe, R. G., Faller, R., Eversole, S., Addy, M., West, N. X.: The protective effects of toothpaste against erosion by orange juice: studies in situ and in vitro. J. Dent., roč. 35, 2007, č. 6, s. 476–481.

13. Hughes, J. A., Jandt, K. D., Baker, N., Parker, D., Newcombe, R. G., Eisenburger, M., Addy, M.: Further modification to soft drinks to minimise erosion. Caries Res., roč. 36, 2002, č. 1, s. 70–74.

14. Ivančaková, R.: Problematika erozí zubů u dětí. LKS, roč. 13, 2003, č. 6, s. 11–13.

15. Jain, P., Nihill, P., Sobkowski, J., Agustin, M. Z.: Commercial soft drinks: pH and in vitro dissolution of enamel. Gen. Dent., roč. 55, 2007, č. 2, s. 150–154.

16. Larsen, M. J., Nyvad, B.: Enamel erosion by some soft drinks and orange juices relative to their pH, buffering effect and contents of calcium phosphate. Caries Res., roč. 33, 1999, č. 1, s. 81–87.

17. Lukáčová, I.: Nutriční aspekty zubního zdraví. Bakalářská práce. Lékařská fakulta, Masarykova univerzita v Brně, 2007, s. 54–57 [citace 2011-07-07]. Dostupný z http://is.muni.cz/th/ 142428/lf_b/Irena_Lukacova.pdf

18. Lussi, A, Jaeggi, T.: Chemical factors. In Lussi, A., Addy, M., Angmar-Mansson, B., et al.: Dental erosion from diagnosis to therapy, Basel, Karger, 2006, s. 78, 81.

19. Lussi, A., Jaeggi, T., Zero, D.: The role of diet in the etiology of dental erosion. Caries Res., roč. 38, 2004, suplement 1, s. 34–44.

20. Lussi, A., Kohler, N., Zero, D., Schaffner, M., Megert. B.: A comparison of the erosive potential of different beverages in primary and permanent teeth using an in vitro model. Eur. J. Oral Sci., roč. 108, 2000, č. 2, s. 110–114.

21. Lussi, A.: Erosion tooth wear. Workshop. Bern, April, 2010.

22. Lussi, A.: Erosive tooth wear- a multifactorial condition of growing concern and increasing knowledge. In Lussi, A., Addy, M., Angmar-Mansson, B., et al.: Dental erosion from diagnosis to therapy, Basel, Karger, 2006, s. 2.

23. Machado, C., Lacefield, W., Catledge, A.: Human enamel nanohardness, elastic modulus and surface integrity after beverage contact. Braz. Dent. J., roč. 19, 2008, č. 1, s. 68–72.

24. Oliver, W. C., Pharr, G. M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res., 1992, č. 7, s. 1564–1583.

25. Ren, Y.-F., Amin, A., Malmstrom, H.: Effects of tooth whitening and orange juice on surface properties of dental enamel. J. Dent., roč. 37, 2009, č. 6, s. 424–431.

26. Smales, R. G., Kaidonis, J. A., Dawes, C.: Tooth structure, saliva and critical pH. In Yip, K. H. K., Smales, R. G., Kaidonis, J. A.: Tootherosion: prevention and treatment, New Delhi, Jaypee Brothers Medical Publishers ltd, 2006, s. 12, 15, 19–21.

27. Tahmassebi, J. F., Duggal, M. S., Malik-Kotru, G., Curzon, M. E. J.: Soft drinks and dental health: a review of the current literature. J. Dent., roč. 34, 2006, č. 1, s. 2–11.

28. Touyz, L. Y. G., Mehio, A.: Dental ravages from acidulated soft drinks. J. Aesth. Implant Dentistry, roč. 8, 2006, č. 3, s. 20–33.

29. West, N. X., Hughes, J. A., Parker, D. M., Newcombe, R. G., Addy, M.: Development and evaluation of a low erosive blackcurrant juice drink in vitro and in situ. 2. Comparison with a conventional blackcurrant juice drink and orange juice. J. Dent., roč. 27, 1999, č. 5, s. 341–344.

30. West, N. X., Hughes, J. A., Addy, M.: Erosion of dentine and enamel in vitro by dietary acids: the effect of temperature, acid character, concentration and exposure time. J. Oral Rehabil., roč. 27, 2000, č. 10, s. 875–880.

31. www.elearningerosion.com

Labels
Maxillofacial surgery Orthodontics Dental medicine
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#